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Abstract This paper examines the impact of natural capital characteristics such as soil quality, conti-
nentality (regional climatic differences) and environmental (rainfall and temperature) on farm market 
gross margin. The natural capital variables vary geographically and therefore differentially influence 
farm outputs and costs depending on location. In order to account for the geospatial heterogeneity of 
natural capital, we use a system of equations known as an income generation model that incorporates 
physical capital, human capital, and natural capital to adjust the data within the geospatial microsim-
ulation model. In our model, we utilise agricultural administrative and National Farm Survey data. 
The incorporation of the geospatial heterogeneity due to local variations in natural capital results in 
considerable adjustments in simulated agricultural incomes across the case study country: Ireland, 
reflecting agronomic differences arising from the natural capital condition. The results show that after 
incorporating natural capital drivers into our model, market gross margin per hectare increased in the 
South and South-East. In contrast, sub-catchment level gross margin per hectare values decreased 
in the Midlands and parts of the North. Decomposing the variation in income between districts and 
within districts, we find that accounting for heterogeneity in natural capital also reveals greater income 
variability, particularly in relation to between-district variability. The outputs of the study demonstrate 
the impact of natural capital on farm income and the importance of accounting for localised environ-
mental and agronomic conditions.
JEL classification: C15, C63, Q10, Q19
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1. Introduction
Agriculture is a sector that is heavily impacted by public policy both through regulation (food safety, 
environmental condition) and through subsidies that support food security and environmental public 
goods. There is therefore extensive use of policy simulation models to understand the impact of policy 
on the sector (Shrestha et al., 2016; O’Donoghue, 2017). As a land-based industry, agriculture relies 
more than most other sectors on the extent and condition of the underlying natural capital, particularly 
in terms of soil quality and the availability of water. (Emran et al., 2019; Macholdt and Honermeier, 
2017). Due to geographical variations in natural capital, ‘place’ is also an important factor to consider 
in relation to policy analysis, particularly where subsidies are related to “Areas of Natural Constraint” 
or for catchment scale modelling (Ramilan et al., 2012). Yet many of the datasets that rely on farm 
income modelling are either not georeferenced or are not representative at a geospatial scale. While 
geospatial or spatial microsimulation methods have been developed to undertake policy analyses at 
a local scale (Hynes et al., 2009b; van Leeuwen and Dekkers, 2013), this paper suggests a method 
to improve geospatial consistency between underlying natural capital and farm level outcomes, which 
then helps to understand the impact of natural capital on farm income.
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Microsimulation is a simulation or sampling technique that utilises microdata to simulate the impact 
of policy, economic or social change on micro units such as the individual household, firm or farm 
(O’Donoghue et  al., 2014b). Geospatial microsimulation refers to microsimulation with locational 
(geospatial) information, which is used for geospatial policy analysis or other location-based studies 
(Rahman and Harding, 2016; Tanton, 2018; Tanton, 2014). As current farm datasets lack farm survey 
variables with geospatial/locational information, geospatial microsimulation techniques are used to 
combine farm survey datasets with national (census) datasets that contain the required geospatial 
information to produce a geospatial distribution of farms with detailed farm characteristics consistent 
with the local natural capital or environmental context.

There are many examples of how such models can be used for geospatial policy analysis and for 
ex-ante farm-level evaluations (of for example, the role of differential agronomic and environmental 
factors in designing policies such as the EU Green Deal or the Biodiversity Strategy 2030). Shrestha 
et al. (2007) simulate the geospatial distributional impact of the 2005 Common Agricultural Policy 
(CAP) reforms, while O’Donoghue (2017) simulate the impact of the 2014 reforms and Vidyattama 
and Tanton (2020) simulate the geospatial distributional impact of an external market change on 
farmer financial distress.

From an environment perspective, Hynes et  al. (2008) model habitat conservation and partic-
ipation in agri-environmental schemes at a local geospatial scale. Hynes et al. (2009a) model the 
geospatial distribution of greenhouse gas emissions and Chyzheuskaya and O’Donoghue (2017) and 
Ramilan et al. (2012) use a geospatial microsimulation modelling framework at catchment scale to 
simulate the economics of farm level water quality mitigation measures.

Geospatial microsimulation models are generated by either sampling or reweighting survey data 
to be consistent with a geospatially representative dataset such as a small area census file (Tanton 
and Vidyattama, 2020). In this way the model combines both farm level contextual information 
and geospatial characteristics, thus combining the best of both datasets. This raises a number of 
issues. Typically farms are sampled or reweighted based on demographic information such as farm-
size, household-income, age of the farmer as in the case of van Leeuwen and Dekkers (2013) or 
milk volume, cow numbers and farm size of Ramilan et al. (2012). Vidyattama and Tanton (2020) 
also utilise a variety of farm level demographic and economic characteristics such as farm household 
income, farm type, the value of agricultural operations, age group by sex, household composition and 
non-school qualifications.

These variables are sufficient for the analysis of demographic off-farm characteristics (van Leeuwen 
and Dekkers, 2013), however in considering the impact of local natural capital on agricultural produc-
tivity or the impact in reverse of agriculture on the condition of the natural capital in the local envi-
ronment, these models may not adequately reflect local variations in natural capital and consequent 
variations in farm incomes. If natural capital variables are not used in the weighting or sampling that 
generates the base data of geospatial microsimulation models, then the outputs and costs will not 
reflect the local extent and condition of the natural capital. While Hynes et al. (2009a) and O’Dono-
ghue (2017) utilised a simple six category soil variable to produce farm level microsimulation models, 
the effective incorporation of natural capital variables is more complex.

Natural Capital as a concept is useful in considering environmental drivers of agricultural outcomes 
(Helm, 2019). The incorporation of additional natural capital variables during the geospatial microsim-
ulation data creation process is however challenging due to sample size and resulting high weights. In 
this paper we present an alternative approach to improving the geospatial natural capital resolution 
in agricultural and ecological policy models, focusing on pasture-based livestock systems which are 
particularly influenced by heterogeneity in natural capital (environmental and agronomic) and are 
important drivers of ecosystem condition.

In analysing farm level impacts in the context of geospatial farm microsimulation modelling, 
Ireland provides an example of pastoral livestock systems with varying environmental and agronomic 
contexts. The major commodities of the Irish agricultural sector are milk, cattle, pigs and sheep with 
shares (excluding forage) in 2016 of 36.1%, 35.1%, 7.5% and 3.8%, respectively (Department of Agri-
culture, Food and the Marine, 2018). Livestock production is pasture based with the main inputs (or 
intermediate consumption of agriculture) in terms of expenditure including animal feed, forage plants, 
fertilisers, maintenance and/or repair, with shares of 27%, 21%, 10% and 9%, respectively (Depart-
ment of Agriculture, Food and the Marine, 2017).
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This paper contributes to the literature by building on an existing farm-level microsimulation model 
SMILE (the Simulation Model for the Irish Local Economy) (O’Donoghue et al., 2012), to incorporate 
the environmental and agronomic impact of policies at farm level, thereby improving the geospatial 
reliability of agricultural and ecological modelling. The improved model is then used to investigate the 
effect of natural capital on farm market gross margin.

2. Theoretical framework
2.1. Natural capital
"Natural capital describes natural assets in their role of providing natural resource inputs and envi-
ronmental services for economic production... is generally considered to comprise three principal 
categories: natural resource stocks, land and ecosystems".1 Natural Capital can be further defined as 
the stock of natural or ecosystem assets which include geology, soil, air, water and all living things, 
from which we derive a range of services, often called ecosystem services, such as the food we eat, 
the water we drink and the plant materials we use for fuel, building materials and medicines, climate 
regulation and natural flood defences provided by forests, carbon stored by peatlands, or the pollina-
tion of crops by insects or cultural ecosystem services.2 Natural capital is accounted for in terms of the 
extent of elements such as grassland, cropland, forest, heathland, scrub and their condition as in the 
case of soil quality, species accounts, nutrient accounts and related water quality accounts, along with 
services (agriculture, ecosystem) and benefits (economic).3 In the System of Environmental Economic 
Accounting, ecosystem assets or stocks are divided into components ecosystem extent and condition.

While many geospatial agricultural and ecological analyses are strong on modelling physical capital 
and to some degree ecosystem extent (intensive and extensive grasslands, cropland), these models 
are typically weaker on the ecosystem or natural capital condition. As already highlighted, geospatial 
microsimulation models are notably weaker in this dimension and as a result, tend to underestimate 
the geospatial heterogeneity of farm incomes, which are often used for place-based policy analysis. 
In grass-based livestock farming, the focus of this study, agronomic and environmental characteristics 
of natural capital define the quality and quantity of pasture growth that is driven by soil and weather, 
which in turn impacts on farm costs and output (Khairo et al., 2008). In this paper, the agronomic 
variables used describe soil quality e.g. peat and mineral soils, and physiological characteristics e.g. 
topography, while environmental variables include temperature, rainfall, continentality2 and distance 
to sea.

Environmental and agronomic variables, such as temperature, rainfall and soil are an essential driver 
of natural capital condition (Dominati et al., 2010). Soil and its mineral composition is an important 
part of farm natural capital for grass growth (Dong et al., 2012; Kenny, 2017), influencing grass and 
crop yields and ultimately farm output (Zhou et al., 2006). In this paper, soil quality accounts for 
different characteristics such as fertility, soil pH, nutrient properties and physiological properties.

Temperature and rainfall interact with soil to influence grass production. In turn, the physical quality 
(e.g. trafficability) of farm soil and grass growth-rate largely determine the livestock carrying capacity 
of land. There is however, wide variation in the distribution of soil quality classes across Ireland 
(Creamer et al., 2014). This variation confers natural advantages for some farmers with regard to 
greater farm output, while other farmers are disadvantaged as a result of natural constraints. Table 1 
provides an example of the heterogeneity of livestock density and feed requirements in the South (SE 
and SW) compared to the border area in the North. The southern counties have largely well-drained 
soils compared to the generally wetter soils in the North, allowing for substantially greater carrying 
capacity in terms of livestock density per hectare on the better soils, as weather differences result in 
a longer grass-growing season in the South than in the North. Thus, animals can be kept outdoors on 
grazed grass rather than indoors on more expensive silage or purchased feed (. As a result, purchased 
feed cost per animal is typically lower for farms in the South than in the North.

1.	 stats.oecd.org/glossary/detail.asp?ID=1730.
2.	 https://naturalcapitalforum.com/about/
3.	 https://ec.europa.eu/environment/nature/capital_accounting/pdf/MAES_INCA_2018_report_FINAL-fpub.
pdfhttps://ec.europa.eu/environment/nature/capital_accounting/pdf/MAES_INCA_2018_report_FINAL-fpub.pdf
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Table 1. Stocking rate and purchased feed requirements in different regions.

Livestock Unit (LU) 
per Ha Feed (€) per LU

Land Area North/Border SE SW
North/
Border SE SW

< 20 Ha 1.68 2.39 2.22 163.9 97.1 120.1

20-30 Ha 1.70 2.28 2.28 253.5 280.3 345.4

30-50 Ha 1.78 2.13 2.12 347.3 223.5 265.3

>= 50 Ha 1.84 2.10 1.90 339.8 188.6 256.9

Source: Teagasc National Farm Survey 2014.
Note: LU per Ha – Stocking rate or livestock units per hectare; Feed (€) per LU - Purchased feed per livestock unit.

Even in a relatively small country like Ireland, ecosystem condition due to agronomic and environ-
mental differences across the country can cause considerable variability in farm output (e.g. lower 
grass growth and higher fodder costs on less productive soils and/or reduced livestock carrying 
capacity/livestock density per hectare due to high rainfall).

2.2. Measuring farm profitability
Agricultural income is comprised of income from both the market (sales) and from agricultural subsi-
dies (such as the Common Agricultural Policy (CAP)), however this paper focuses only on income 
which is directly influenced by agronomic and environmental variables, namely market income. In 
estimating farm market income, it is necessary to understand the interaction between the elements of 
farm production, i.e. output, costs, agronomic and environmental factors. Geographical location and 
the associated agronomic and environmental characteristics are key elements influencing farm output 
and cost, manifested by grass output, which is the main fodder in grass-based livestock systems. The 
area of land available to the farm and the soil quality (productivity, drainage and topography) influ-
ence livestock density and crop yields, however yield is also influenced by genetic factors.

Farm gross margin (farm gross output less total direct costs) is one of the primary measures used 
to evaluate farm profitability. Farm gross output can be defined as the sum of the product of the price 
and the volume of output per enterprise i. Total direct costs are all directly traceable costs farm costs. 
The production technology per farm enterprise is expressed as (Equation 1):

	﻿‍ Vi
M = AiKα

i Lβ
i Xv

i haδi luµi Eψ
i = fi

(
A, K, L, X, ha, lu, env/α,β, υ, δ,µ,ψ

)
‍� (1)

‍Ai‍ is Total Factor Productivity (TFP), while ‍Ki‍ , ‍Li‍ and ‍Xi‍ represent capital, labour and the remaining 
inputs for given enterprise ﻿‍ i‍, respectively. ‍ha, lu‍ and ﻿‍ E‍ express utilised agricultural area (hectare), 
livestock unit and environmental and agronomic factors, while ‍α,β, υ, δ,µ,ψ‍ present the output elas-
ticities of ‍A, K, L, X, ha, lu, E‍, respectively.

There are a variety of reasons for variation in the level of production in the short run. First of all, for 
a given land base, animals may be purchased or sold, thereby changing the stocking density or the 
area of land under livestock. Secondly, the yield can vary either in the long-term through breeding, or 
in the short run through improvements as a result of buying-in animals of improved genetic merit, or 
variations in feed or fertiliser use. In the short run, it is assumed that land area is fixed, given compar-
atively low land sales in Ireland, although land may also be accessed through land rental agreements.

The equation in relation to costs is as follows, where ‍W
i
CV ‍ is the price of input costs (both direct and 

overhead costs) and ‍X
i
CV ‍ represents the volume of inputs (Equation 2):

	﻿‍
Cv =

∑
i

wi
CVXi

CV
‍�

(2)

We include in this definition of variable cost, overhead costs such as utilities and fuels that vary 
with production. Another long-run overhead cost associated with, for example, depreciation of assets 
or interest payable on loans, is also included in overhead costs. On the other hand, direct costs are 
directly traceable to a particular farm system, such as animal feedstuffs.
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While some inputs (such as land) are often thought to be comparatively independent of produc-
tion within the short run, or assets such as machinery and buildings and to some extent labour, many 
of the inputs like fertiliser, purchased animal feed, seeds and crop protection are endogenous with 
production. There is some substitution between inputs so using greater quantities of fertiliser (within 
limits) in tandem with improved grassland management can reduce the necessity for purchased feed 
stuff or vice versa.

In this paper, we use the SMILE model to investigate the impact of natural capital variables, focusing 
on the impact of the natural capital variables on the farm market gross margin. The SMILE model has 
been used in many peer-reviewed analyses (O’Donoghue et al., 2012; O’Donoghue et al., 2013; 
O’Donoghue et al., 2021O’Donoghue, 2017). The robustness of the model has been demonstrated 
through testing of simulated results against target variable(s) totals and validated against assump-
tions. Please refer to the references mentioned earlier for more information.

3. Methods and data
This section describes the development of a modelling framework to facilitate the use of microsimu-
lation as a methodology to incorporate natural capital in policy assessments that rely on farm income 
modelling. This is achieved by extending an existing farm-level geospatial microsimulation model 
(SMILE) to incorporate environmental and agronomic variables and thus improve the consistency of 
farm incomes with the underlying natural capital in local areas.

3.1 Geospatial farm level microsimulation
The field of farm level geospatial microsimulation modelling is primarily concerned with the geospatial 
incidence of farm level variables (O’Donoghue et al., 2021; O’Donoghue, 2017). Geospatial micro-
simulation models use a matching process to take a micro-dataset and make it consistent with small-
area calibration data (Tanton, 2014; O’Donoghue et al., 2014b), in order to generate a dataset that 
is representative both of the farm-level information contained in the micro-dataset and the geospatial 
information from the geospatial calibration data. Essentially the approach involves either reweighting 
the micro-data to make it consistent with geospatial calibration totals taken from Census or Adminis-
trative calibration data (Tanton and Vidyattama, 2010), or sampling of the micro-data according to 
sample quotas derived from the geospatial calibration data (Farrell et al., 2013).

In this paper we utilise the Simulation Model of the Irish Local Economy (SMILE-Farm) (O’Dono-
ghue et al., 2013; ), which generates a geospatial distribution of farms that is consistent with small-
area data in terms of farm size and system and the contextual data in the Teagasc National Farm 
Survey (NFS) which is nationally representative by farm size and system and is the basis of the Irish 
data provided annually to the European Commission Farm Accountancy Data Network (FADN). There 
have been a number of variants of the SMILE model. Hynes et al. (2009b) describe the SMILE model’s 
construction and calibration using simulated annealing (, linking the 2000 Census of Agriculture with 
the Teagasc NFS (Ballas et al., 2005; Shrestha et al., 2007).; O’Donoghue et al. (2012) utilised the 
less computationally intensive Quota Sampling (QS) (Farrell et al., 2013) to link the NFS to the 2010 
Census of Agriculture. QS is a probabilistic reweighting methodology that reweights survey data 
according to chosen constraint totals for individual pre-defined small areas.

SMILE re-samples from the Teagasc NFS which contains detailed farm level management and 
income characteristics to be consistent with geospatial agricultural information contained in the 
Census of Agriculture (collected every 10 years or administrative data (produced annually). The cali-
bration totals reflect the main variables associated with farm-level outcomes including farm system, 
size and an aggregated soil type. However the incorporation of heterogeneous variables could 
improve the geospatial resolution and representativeness of the model in relation to local environ-
mental attributes.

In order to understand how improved geospatial environmental characteristics might improve the 
model, we consider an example. Take two similar sized dairy farms, one on well-drained soils in the 
South West with a long grass growing season because of milder, drier weather conditions and a similar 
dairy farm in the North East, on heavy, wet soils with a shorter grass growing season. As outlined in 
Table 1 the former will likely have a higher stocking rate and lower purchased feed requirements 
than the latter. In order for SMILE to be able to differentiate between these different environmental 
contexts, additional information in relation to the condition of local natural capital is required.

https://microsimulation.pub/articles/research-article
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In sampling or reweighting from a national survey to be consistent with small area data of a census 
database, one option is to sample for farms within a particular region from farms of that region. 
However, O’Donoghue (2017) found that the performance of the matching algorithm was poorer 
than when sampling from a regional sample pool. This arises as the number of cells of farm size by 
farm system reduces when allocated across regions, resulting in a poorer match. Thus an alternative 
approach is required to adjust data post-sampling according to differences in agronomic and environ-
mental factors.

3.2 Conditional independence of matching in geospatial simulation
The conditional independence assumption is a necessary condition for any statistical matching or 
enhancement procedure (D’Orazio et al., 2006). Geospatial microsimulation is in effect a statistical 
matching process, calibrating a series of overlapping variables between the micro survey and the 
calibration totals and the incorporating other non-overlapping geospatial variables from the Census 
or other geospatial dataset into the micro dataset. In a farm-based geospatial microsimulation model, 
the overlapping variables are farm characteristics, while we import geospatial attributes into the micro 
data. As highlighted above, the local environment informs the distribution of stocking rate of animals 
and the nature of the feed and fertiliser inputs used on a farm.

More formally, consider two datasets, say A and B with sets of variables (X, Y) and (X, Z) respec-
tively. Statistical matching involves matching two datasets together by finding units in sample B with 
similar values of the X variables in sample A, to produce a new dataset (X, Y, Z). Implicit in this method 
is finding a distance function D (XA, XB) where the match is found when the distance is minimised for 
the set of overlapping variables X (Rodgers and DeVol, 1981). In terms of geospatial microsimulation, 
A is the geospatial dataset where Xs are the overlapping variables used for matching and Zs are the 
geospatial attributes, while sample B is an attribute-rich dataset such as an income survey.

The assumption outlined in Rodgers and DeVol (1981) is that the conditional distribution of Z 
given X is independent of the conditional distribution of Y given X. This assumption is known as Condi-
tional Independence. The Variance-Covariance matrix for these datasets can be defined as Equation 3:

	﻿‍

C=




Cov(X, X) Cov(X, Y) Cov(X, Z)

Cov(Y, X) Cov(Y, Y) Cov(Y, Z)

Cov(Z, X) Cov(Z, Y) Cov(Z, Z)




‍�

(3)

Each of these co-variances can be measured using either dataset, except for ‍Cov
(
Y, Z

)
‍ and 

‍Cov
(
Z, Y

)
‍. It is assumed that these covariances are zero. In our geospatial microsimulation model, the 

relationship between our non-overlapping variables ﻿‍Y ‍ and our geospatial variables ﻿‍Z ‍ is uncorrelated 
once we condition on the matching variables. Thus, we are assuming that the geospatial incidence 
of ﻿‍Y ‍ is fully accounted for by the geospatial distribution of our ﻿‍ X ‍ variables. However, this assump-
tion does not always hold, so essentially there is geospatial heterogeneity of variables of interest, 
independent of the correlation with the overlapping or matching variable ﻿‍X ‍. Based on this equation, 
the combination of matching variables (farm characteristics) and overlapping variables (variables of 
interest) don’t necessarily represent the combination of matching variables (﻿‍X ‍), overlapping variables 
(﻿‍Y ‍) and geospatial variables (‍Y ‍).

Therefore, when sampling variables such as farm system and farm size from a survey dataset using 
control totals of a census dataset and matching with geospatial environmental variables, it is assumed 
that the conditional independence of this matching is intact and that all geospatial interactions of other 
variables are incorporated in these matches (O’Donoghue et al., 2014b; O’Donoghue et al., 2010). 
However, this paper argues that the failure to incorporate geospatial environmental and agronomic 
factors within the match leads to a failure of the conditional independence. A common weakness in 
existing geospatial models is that the re-sampling or reweighting processes used in their generation 
don’t fully incorporate geographically varying agronomic and environmental variables (Hynes et al., 
2009a; Morrissey et al., 2008).

Specifically, as highlighted in Table 1, if the local environmental characteristics are not accounted 
for, the livestock density in areas with poor natural capital will be over-estimated, while purchased 
feed requirements will be under-estimated and vice versa. As a result, the conditional independence 
assumption fails, because farms with higher livestock density can be located in good or bad soils that 
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are not conditionally dependent on each other. Thus the match algorithm smooths the relationships, 
diminishing the actual heterogeneity and under-stating geospatial variation of farm activity, by in 
effect understating the importance of natural capital in production. This means that the linking of 
overlapping variables with agronomic and environmental variables should be based on a specific loca-
tion rather than a region or a theoretical condition.

The consequence of sampling without incorporating the local environmental and agronomic 
context is that sampled results will not be accurate for geospatially varying agronomic and environ-
mental contexts. A correction mechanism to account for this failure is needed to improve the geospa-
tial reliability of the data so as to enable us to analyse the impact of agronomic and environmental 
factors on farm market (gross) margin, a commonly-used measure of farm income.

In addressing the unexplained heterogeneity problem arising from the failure of the conditional 
independence assumption, increasing the number of overlapping variables is considered. However, 
it is not feasible to increase the number of constraints or to focus on regional scale (as it worsens the 
performance of the model/results (O’Donoghue et al., 2014b; O’Donoghue et al., 2018; O’Dono-
ghue et al., 2021O’Donoghue, 2017). Focusing on a regional scale is not ideal, because the agro-
nomic and environmental situation is more granular than the region and even a very small region can 
have variation in localised environmental conditions.

Therefore, as it is not feasible to use an approach that avoids the conditional independence 
assumption, an approach that corrects for the failure of this assumption is needed. This is undertaken 
by creating a series of production and cost functions that account for the conditional covariance of 
farm characteristics and agronomic situations, conditional on overlapping variables, namely an Income 
Generation Model that adjusts for agronomic and environmental factors.

3.3 Natural capital based income generation model
An income generation model is a system of equations that defines the drivers of different components 
of income. In the context of a farm level model, components of farm market gross output (output 
before subsidies are paid), such as dairy, cattle, sheep and tillage market gross output are included. 
Tillage farms generally have multiple crop enterprises for rotation purposes and can also provide input 
into livestock systems.

Early papers on income generation models were based on wage comparisons and distributions 
(Blinder, 1973; Oaxaca, 1973; DiNardo et al., 1996). A study by Winters et al. (2002) carries out 
the income generation process for crop, livestock, agricultural and non-agricultural wages. Rahman 
et al. (2017) use an Alternative Income Generating Activities model to analyse net monthly income of 
households relying on non-forestry sources of earnings.

In the geospatial microsimulation model described in this paper, a panel data model is utilised for 

farm variables in a form other than binary form, so the production (‍
Vi,t
luit ‍) and cost functions (‍

Xi
CV

hai ‍) take 
the following forms, respectively (Equation 4, 5):

	﻿‍
Vi,t
luit

= fi
(

pi
M,t, WCV,t, Ait, Kit, Lit, Xit, hait, luit, ui,σit/α,β, υ, δ,µ

)
‍� (4)

	﻿‍
Xi

CV
hai

= gl
i
(
WCV,t, Ait, Kit, Lit, Xjt,j̸=i, Vit, hait, luit, ui,σit/α,β, υ, δ,µ

)
‍� (5)

where ‍ui‍ is permanent and ‍σit‍ is transitory effects. The production function (‍
Vi,t
luit ‍) is defined as farm 

output divided by farm livestock unit in order to adjust for high output and low output farms that are 

mainly impacted by animal numbers. The cost function (‍
Xi

CV
hai ‍) is calculated as farm variable (direct) costs 

divided by farm utilised agricultural area to provide variable costs per farm size (hectare).
The technical efficiency element (‍Ait‍) of the model is affected by agronomic conditions and envi-

ronmental factors (‍Eit‍), the quality of a land (‍Qit‍), access to technical knowledge (‍Hit‍) and involvement 
in activities, e.g. environmental or forestry schemes and off-farm employment (‍Oit‍). If ‍A

∗
it‍ represents 

efficiency and managerial skill, then:

	﻿‍ Ait = A∗
it × Eit × Hit × Oit × Qit‍� (6)

	﻿‍ Ai0, Ki0, Li0, Xi0, hai0, lui0‍�
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where ‍Ai0, Ki0, Li0, Xi0, hai0, lui0‍ are initial states of technical efficiency, capital, labour, remaining 
inputs, utilised agricultural area (hectare) and livestock unit. The model draws a random number in 
order to account for the random noise ‍σit‍. Then it simulates each of the dependent variables in turn. 
For simplicity, the estimation and simulation of all of the equations are carried out independently 
(O’Donoghue, 2017).

As part of the Income Generation process, sampling needs to be conditioned on environmental 
and agronomic characteristics, to avoid biases and improve accuracy in the target variable of farm 
gross output.

In the first case, sampling is carried out without adjustment for agronomic and environmental 
variables (Equation 7). While in the second case, while simulating samples, samples are adjusted to 
localised agronomic and environmental characteristics by means of changing ‍Zorig‍ (original form) to 
‍Z

′
‍ (adjusted form) based on the location of farms. Initially, the farm output results are calculated using 

Equation 7, while equation 8 is used later to extract adjusted farm market margin from the calibration 
to localised agronomic characteristics (please see O’Donoghue (2017) for model fitting information 
and validation procedures).

	﻿‍ Y = α + βZorig + εi‍� (7)

	﻿‍ Y
′

= α + βZ
′

+ εi‍ � (8)

where ﻿‍ Y ‍ is output without accounting for localised agronomic characteristics, ﻿‍ Y
′
‍ is market gross 

margin after taking into account localised farm context, α is the intercept, ‍β‍ is the coefficient of vari-
ables relating to natural capital (environmental and agronomic), ﻿‍Z ‍ represents the environmental and 
agronomic variables and ‍εi‍ is an error term.

3.4 Farm market gross margin inequality decomposition
To evaluate the impact of the model, we compare the impact of the procedure on the geospatial 
heterogeneity of farm incomes, by comparing the intra and inter-area differences in the distribution of 
farm incomes. Examining the variability of incomes between farms within and across areas, inequality 
is decomposed into population sub-groups, where groups are areas. Total variability of incomes can 
then be decomposed into a factor attributed to between-group variability across space and variability 
within a district (within-group variability). Utilising the I2 index, within-group variability is defined in 
Equation (9), while between-group variability is defined in formula (10).4 Utilising a population share 

‍

(
1
n

)
‍
, we see that between-person inequality, is in fact the inequality of mean lifetime income.

	﻿‍
Iw =

∑
j

wjIj
‍�

(9)

where ‍wj = v2
j f−1

j ‍,‍vj‍ the income share of each person j and ‍fj‍ is the population share of the person, in 

this case 
‍

(
1
n

)
‍
.

	﻿‍

Ib
(
y
)

= 1
2


∑

j
fj
(
µj
µ

)2
− 1


 = 1

2


1

n
∑

j

(
µj
µ

)2
− 1


 = I

(
µ
)

= Ī
‍�

(10)

where ‍µj‍ is the mean lifetime income for person j and μ the mean population lifetime income. The 
simulated data in SMILE is then used to compare the degree of between and within-geospatial district 
(county) inequality and examine the changes resulting from incorporating natural capital has on the 
level of both.

In order to see the level of change in farm market output within counties and among counties, the 
generalized entropy index is deployed (Shorrocks, 1980). The generalized entropy index can be used 
to measure the income inequality for a given dataset (Bourguignon, 1979). In this case, it is utilised to 

4.	 Björklund and Merilä, 1997 use a similar decomposition method but instead use the I0, Theil L and I1 Theil T 
indices.
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measure farm market output inequality within and between counties. The formula for the generalized 
entropy index is given in Equation 11:

	﻿‍
GE(α) = 1

α2 − α

[
1
n

n∑
i=1

(
yi
ȳ

)α

− 1

]

‍�
(11)

3.5 Data sources
The geospatial microsimulation approach used here requires three datasets: a micro dataset of farms, 
geospatial farm calibration totals from the census and geospatial environmental characteristics. SMILE 
is calibrated to the sub-catchment level geospatial unit. There are 583 sub-catchments in Ireland 
within 46 river catchments.

3.6 Agricultural administrative data
Geospatial microsimulation models require geospatial data to calibrate micro-data to be consistent 
with local geospatial patterns. In this version of the model, given a 10 year gap between Census of 
Agriculture totals, we utilise tabulations drawn from administrative data, the Animal Identification and 
Movement (AIMS) System and Land Parcel Information System (LPIS) maintained by the Department 
of Agriculture, Food and the Marine (DAFM), which records animal movements between herds, from 
birth to slaughter and contains information such as: calf birth by month, gender, sire type, number of 
beef and dairy calves, mart movement by month, gender and breed, as well as farm-to-farm move-
ments cattle disposals and age profile of herds and are published annually (Department of Agricul-
ture, Food and the Marine, 2017).

AIMS provides detailed animal numbers for local geospatial areas. AIMS farm types are classified as 
specialist beef production, specialist dairy, specialist sheep, mixed grazing livestock, specialist tillage, 
etc. Land use is recorded in the national LPIS geospatial dataset created by merging aerial photo-
graphs and images from satellites. Each land parcel has its own unique identification number that can 
be used to track attached attributes (Land-parcel identification system (LPIS), 2014). Characteristics 
such as the parcel identification number, herd number, digitised parcel area, crop description, whether 
a parcel is commonage or not, and claimed crop area (for subsidies) can all be found in Irish LPIS data 
(Zimmermann et al., 2016).

3.7 Farm survey data
The survey dataset is required for two purposes, as part of the base sampling or matching process, 
standard in geospatial microsimulation and in the case of this paper, to enable the estimation of an 
income generation model. A specific requirement of the latter purpose is that the data is georefer-
enced so that environmental data can be combined with the Teagasc NFS

The primary data source for the model is the Teagasc NFS for 2014 consistent with the admin-
istrative control totals. It is a voluntary survey, conducted as a part of the European Commission 
Farm Accountancy Data Network (FADN) and is used for policy, research, financial and performance 
measurement purposes (Teagasc, 2017).

The main variables collected in the survey are costs, subsidies, purchases, assets, liabilities, yields, 
inventories and sales. Farms in the survey are characterised as dairy, cattle rearing, cattle other, sheep 
and tillage systems. Because of the small number of farms, poultry and pig systems are not repre-
sented in the Teagasc NFS.

The FADN datasets have been referenced since about 2015 but have as of yet not been released for 
research purposes. A novel feature the Teagasc NFS is that historical data were georeferenced using 
address data. This process was particularly difficult given the imprecision of Irish addresses prior to the 
introduction of post codes in 2014 as described by Green and O’Donoghue et al. (2013). However, 
this geo-referencing process allowed for local environmental variables such as rainfall, temperature, 
altitude, detailed soil codes etc. to be extracted from GIS databases.
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3.8 Representativity
From 2014 onwards, farms below €8,000 Standard Output (SO) were not included in the Teagasc NFS 
sample.5 The 2014 NFS survey represents 78641 farm holdings with 93% of sectoral output, however, 
about 60000 small farms recorded in the Administrative data are not covered by the survey. Thus, 
although most output is covered in the NFS, approximately 20% of the land area is not covered.6

These differences are highlighted in Table 2, which presents the share of farms by system and 
size for both the survey and administrative data on which we develop our control totals. From a size 
perspective, 53% of farms in the administrative datasets are below 30 hectares, while less than 20% 
of the survey farms are in this bracket. Over 80% of the farms in the administrative data are cattle 
and sheep farms. Looking at livestock density, the farms excluded from the NFS have lower farm size, 
livestock density and consequently lower SO; hence their exclusion. Looking at system, dairy farms are 
over-represented in the survey by virtue of their higher output. However, 12% of farms in the admin-
istrative survey contain land, but no animals or tillage crops, as these farms are used for rental, silage 
production or grazing, with limited economic output.

In developing this model, it is important that the under-represented farms or non-represented 
farms are included. To do this, ‘synthetic farms’ are generated to represent missing farm types, (mostly 
cattle and sheep farms). To produce clones, farms under 50 hectares in the survey are replicated, 
adjusting all variables to a smaller farm size. For other pasture-only farms, we sample according to the 
size distribution and set their activity to zero, (bar land rental and silage costs).

Table 2. Comparison of survey and administrative data.

NFS Administrative Data

system <= 20 Ha 20-30 Ha 30-50 Ha 50+ Ha Total <= 20 Ha 20-30 Ha 30-50 Ha 50+ Ha Total

Dairy 1.1 2.4 11.1 20.8 35.4 0.4 1.1 3.6 6.1 11.2

Cattle Rearing 0.7 3.4 6.6 4.4 15.1 7.6 3.9 4.2 1.9 17.5

Cattle Other 2.5 3.6 7.8 11.4 25.4 15.7 7.6 8.5 5.6 37.5

Sheep 1.4 1.7 4.0 5.8 12.9 4.8 2.0 2.6 2.4 11.9

Tillage 0.5 1.0 1.4 5.7 8.6 2.2 1.1 1.7 2.6 7.7

Mixed 0.0 0.2 0.3 2.1 2.6 0.6 0.3 0.4 0.6 2.0

Other Pasture 
Farms (Rental, 
Silage, 
Grazing)

0.0 0.0 0.0 0.0 0.0 5.0 0.7 0.5 6.2 12.3

Total 6.2 12.3 31.2 50.3 100.0 36.3 16.7 21.5 25.4 100.0

3.9 Environmental and agronomic variables
The agronomic and environmental variables that are used in SMILE are grass growth rate, grass land 
cover, continentality (region’s climatic difference), rainfall, temperature, region, distance to sea, the 
principal soil type and physiological land characteristics. In relation to soil quality, ‘Soil1’ represents 
areas with ‘good’ soils, i.e. soils of wide and moderately wide use ranges. Soil2 identifies medium soil 
quality with somewhat impeded drainage, while Soil3 represents poorer soils with limited agricultural 
use. These variables are in binary form, with 1 having an association and 0 otherwise.

Grass is the main source of feed for animals in outdoor farming systems. Spring grass growth rate 
and grass cover variables (Table 3) are taken from satellite observations of grass growth during the 
spring season (Green et al., 2018). Rainfall and temperature data are provided by the Irish weather 
agency (Met Eireann).

5.	 A standard output of €8,000 represents the equivalent of 6 dairy cows, 6 hectares of wheat or 14 suckler 
cows.
6.	 This total depends upon how the NFS is weighted.
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Table 3. Summary statistics of agronomic & environmental variables.

Variable Name Mean St. Dev Min Max

Spring grass growth rate (dry matter kg/ha) 9.33 6.36 -19.37 30.32

Spring grass cover (ha) 6500.25 728.79 3176.46 8575.78

Mean_Rain (annual average, mm) 107.64 23.80 60.25 246.47

Mean_Temp (annual average, °C) 9.07 0.60 4.67 10.76

Soil1 (binary) 0.17 0.37 0 1

Soil2 (binary) 0.81 0.39 0 1

Soil3 (binary) 0.01 0.12 0 1

3.10 Independent and dependent variables
The independent variables included in SMILE are farmer age, farm size, family unpaid labour, dairy 
forage area, cattle forage area, sheep forage area, dairy livestock units, cattle livestock units, sheep 
livestock units, mean rainfall, mean temperature, continentality, distance to sea, land physiology, prin-
cipal soil types and spring grass growth. Table 4 presents both simulated and sampled farm gross 
margin and gross output. All values are in Euro. It can be seen that the means of the simulated and 
sampled values are relatively close to each other, while standard deviation, maximum and minimum 
values have comparatively wider gaps.

Table 4. Sampled and simulated dependent variable (summary statistics).

Variable Obs Mean Std. Dev Min Max

Sampled Gross Margin (€) farmgm_ha 111,369 483.27 705.46 -1185.02 13377.3

Simulated Gross Margin (€) si_farmgm_ha 111,369 483.24 802.28 -6325.19 74604.22

4. Results
This section presents the impact of amending matched data in the geospatial microsimulation model 
to highlight the impact of adjusting to account for localised natural capital.

4.1 Farm income differentials by natural capital
As context, we consider how farm market incomes vary by measures of natural capital. We focus on market 
income as measures of net income incorporating farm subsidies which tend to mitigate agronomic differ-
ences due to subsidies that account for natural capital such as the Areas of Natural Constraints (ANC) 
scheme.7

The relationship between soil quality and farm market incomes in the geo-referenced Teagasc NFS is 
presented in Figure 1. In general, better quality soils such as acid brown earths, brown podzolics and grey-
brown podzolics enable higher stocking densities and are more productive in relation to crop and grass 
growth and consequent output and farm margin. Poorer soil types, e.g. organic (peat) soils and stony (litho-
sols) limit farm productivity and consequent economic performance. Higher stocking rates allow for high 
value systems such as dairy farming. Drier, flatter fertile land allows for high yields and machine trafficability, 
enabling tillage farming to be undertaken.

7.	 The ANC scheme provides payments to people farming land in designated areas face significant hardships 
from factors such as remoteness, difficult topography, climatic problems and poor soil conditions. https://www.
gov.ie/en/service/13d971-areas-of-natural-constraint-scheme.
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Figure 1 Monthly mean gross margin per hectare by soil types (€).

Source: Author calculations using Teagasc NFS (2014).

In Tables S1 and S2 (appendix), this relationship is generalised using a multi-variate regression 
model of market gross margin per hectare against the variables used as a proxy for natural capital in 
this paper. It also reports summary statistics in relation to the natural capital variables in SMILE and 
the base survey, the Teagasc NFS. The former represents the natural capital variables of all agricultural 
land, while the latter represents the natural capital characteristics of areas where the largely higher 
output farms on typically better land are located (see Green et al., 2018).

Applying the survey estimated coefficients to the real geospatial pattern of natural capital and the 
surveyed farms allows for the calculation of the differential impact of natural capital variables. The 
SMILE dataset has 14% lower market gross margin per hectare (€972) than the Teagasc NFS (€1199). 
This difference is expected, given that the NFS is sampled on better land and by definition with better 
farms.8 It implies that the distribution of land in general as represented by all farms is worse than the 
survey data, consistent with Green et al. (2018). This highlights the challenge if natural capital is not 
accounted for when generating the base dataset of the model.

4.2 The geospatial distribution of farm gross margin with and without 
environmental calibration
The initial match is generated by sampling the adjusted NFS using the calibration totals from the 
administrative data according to size and system. The geospatial distribution of the market gross 
margin per hectare is reported in map (a) in Figure 2 and in column (A) in Table 5. The results are 
consistent with largely better land and higher incomes South and East of a line from North East to 
South West, observed by Commins and Frawley (1996). This pattern is a reflection of the sampling 
by size and system from the adjusted survey according to the geospatial control totals. However, this 
regional difference ignores the variations in natural capital identified in Table 1 above.

8.	 It should be noted that while the farms are consistent with the distribution of farms, they are not actual farms 
from the administrative data, but rather farms sampled from the actual NFS. The clone farms to have a geospa-
tial and distributional pattern consistent with the administrative data.
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Figure 2 Market Gross Margin per Hectare Sampled and Simulated (based on Jenks or Natural Breaks 
Classification).

Table 5. Average Changes at County level for Sampled and Simulated Market Gross Margin per Ha

Market Gross Margin per 
Ha (€)

Market Gross Margin per 
Ha relative to national 
average (€) Ratio

Sampled Simulated Sampled Simulated

County Region A B C D D/C B/A

Carlow SE 1094.6 1147.8 1.13 1.24 1.10 1.05

Cavan NW 860.2 735.7 0.89 0.79 0.90 0.86

Clare MW 760.4 722.5 0.78 0.78 1.00 0.95

Cork SW 1617.8 1584.1 1.67 1.71 1.03 0.98

Donegal NW 688.8 515.7 0.71 0.56 0.79 0.75

Dublin E 902.2 935.2 0.93 1.01 1.09 1.04

Galway W 655.0 626.0 0.67 0.68 1.00 0.96

Kerry SW 1129.3 996.2 1.16 1.08 0.93 0.88

Kildare E 988.3 1033.6 1.02 1.12 1.10 1.05

Kilkenny SE 1475.2 1528.0 1.52 1.65 1.09 1.04

Laois M 1093.7 1093.8 1.13 1.18 1.05 1.00
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Market Gross Margin per 
Ha (€)

Market Gross Margin per 
Ha relative to national 
average (€) Ratio

Sampled Simulated Sampled Simulated

Leitrim NW 531.2 387.5 0.55 0.42 0.77 0.73

Limerick MW 1384.3 1386.6 1.42 1.50 1.05 1.00

Longford M 631.3 589.1 0.65 0.64 0.98 0.93

Louth NE 933.6 905.9 0.96 0.98 1.02 0.97

Mayo W 564.8 482.7 0.58 0.52 0.90 0.85

Meath E 1030.0 1072.1 1.06 1.16 1.09 1.04

Monaghan NE 837.8 725.7 0.86 0.78 0.91 0.87

Offaly M 925.9 922.7 0.95 1.00 1.05 1.00

Roscommon W 576.9 534.8 0.59 0.58 0.97 0.93

Sligo NW 600.9 524.1 0.62 0.57 0.91 0.87

Tipperary MW/SE 1380.2 1410.8 1.42 1.52 1.07 1.02

Waterford SE 1564.9 1650.9 1.61 1.78 1.11 1.05

Westmeath M 857.5 883.8 0.88 0.95 1.08 1.03

Wexford SE 1490.0 1575.5 1.53 1.70 1.11 1.06

Wicklow E 1127.7 1089.1 1.16 1.18 1.01 0.97

Total 971.6 926.4 1.00 1.00 1.00 0.95

NB = This analysis focuses on primarily on pastoral farms. E = East. M = Midlands. NE = North East. N = North 
West. SE = South East. SW = South West. W = West.

Figure 2 maps these differences, contrasting simulated and sampled results, and highlighting how 
natural capital factors impact farm market gross margin. The main impacts of agronomic and environ-
mental calibration are seen around the midlands, the West and North-West.

The sampled map (a) represents differences in size and system, without taking additional natural 
capital drivers into account. We see that the North-West, South and South-East farms have a relatively 
higher gross margin per hectare, while the Midlands, North and North-East farmers have lower gross 
margins. This contrasts with the simulated map (b) which incorporates natural capital drivers. The 
simulation results have relatively higher upper bound values in the South and South-East.

Table 5 reports the average market gross margin per hectare before (sample) and after (simulated) 
adjustment. The lowest incomes occur in County Leitrim in the North West in both cases. This reflects 
the location of lower production systems in this area due to the poor agronomic condition (sample) 
and due to the relative difference in extent (simulated). As noted above, as the sampling accounts 
for system differences, which are in part based on ecosystem condition, the impact of the natural 
capital simulation primarily relates to within-system differences. The bottom seven counties in terms 
of income are all located in the West, North West or Border regions, with mainly low-income sheep 
and cattle rearing systems. The ordering is not monotonic, reflecting the underlying ecosystem condi-
tion differences, with the addition of the natural capital variables making the biggest difference in 
Counties Donegal and Roscommon.

At the top of the distribution are counties of the ‘Golden Vale’, Tipperary, Limerick and part of Cork 
and other counties in the South such as Waterford and Kilkenny. These counties have significant dairy 
sectors, the highest income farming system. Broadly their rank remains the same across the sampled 
and simulated results, with Limerick and Tipperary swapping place. The counties in the middle of the 
distribution are counties in the midlands with a combination of cattle finishing, tillage and some dairy 
farms.

Table 5 also tabulates the impact of the adjustment due to natural capital condition differences. 
The adjustment at county level varies from an increase of 11% (Waterford in the SW) to a decrease of 
23% (Leitrim in the NW). Of all counties, Kerry in the South West and Donegal in the North West have 
the biggest falls in rank, falling 5 and 4 places respectively once ecosystem condition is accounted 
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for. Both are coastal counties with relatively large areas of poor land, but with varied farm systems, 
including some dairy farms. In general, the counties in the East, Midlands and South East have the 
highest adjustment, with the North-West having the largest reduction. These are consistent with differ-
ences in grazing season length, which is driven by natural capital characteristics (Green et al., 2018).

Figure 3 Market gross margin per hectare variation.
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Figure 3 represents the county-level variation of the farm (market) gross margin before and after 
adjustment for natural capital variables. It can be seen that in the South-East and East of Ireland, 
there is an increase of up to 5.7% in the farm gross margin. In contrast, the North and South-West of 
the country see up to a 27.1% decrease in market gross margin. At the same time, the Irish midlands 
county-level results don’t show a significant change after the inclusion of natural capital variables in 
the model and, on average, shown only a slight increase in farm gross margin.

Our interest in the geospatial distribution of farm income relates to variation in natural capital or 
environmental attributes on the one hand, and the impact of agricultural activity on the other hand. 
In Table 6, we decompose the variation of market gross margin per hectare across all farms into 
between-district (geospatial area) variation and within-group variation at the sub-catchment level.9 It 
should be noted that between-group variation accounts for only about 9-10% of the total variation 
of market gross margin per hectare; it is quite low, but consistent with other findings (O’Donoghue, 
2017). This reflects the greater variation between people than between places, reflecting that 
individual farmers makes individual decisions in relation to stocking rate, system and feed. Farmers 
also have different skills, efficiency and motivation.

Table 6. Within and between group variation in market gross margin per hectare.

Base igm3

GE(2) Gini GE(2) Gini

Total 1.056 0.677 1.207 0.712

Within 0.960 1.088

Between 0.096 0.119

NB = This analysis focuses on primarily on pastoral farms.
The Geospatial unit is sub-catchment.

In undertaking the geospatial adjustment, we find that the simulation method captures more vari-
ation, with overall variation increasing by 14% when using the Generalised Entropy measure and 5% 
when using the Gini. Between area variation increases by 23% as the model improves the geospatial 
relationship between agricultural income and the pattern of natural capital. Within-area variability also 
increases but at a lower rate of 13%, given that there are environmental differences within districts as 
well. Combining, we find that the share of variation accounted for by between-area variation increases 
by 8%. Within-area variation remains the most important source of variation.

In Table 7, the statistical significance of the changes made by the simulation procedure to improve 
the relationship between agriculture and natural capital is reported. For all farms, the mean market 
gross margin per hectare falls by 5%, with the change in mean being significantly different from zero. 
The components of the market gross margin, output and direct costs, change by a similar percentage, 
maintaining the direct cost to output ratio at about 31%.

At a system level, the difference in stocking rate (intensity) and output per livestock unit (yield) on 
dairy farms, although significantly different from zero has the smallest change of 1% increase and a 
2% decrease respectively. When combined into gross output, the changes balance out. This reflects 
the concentration of dairy systems on better land. The adjustment for natural capital has the highest 
impact for sheep farms as they occur both in upland areas and lowland areas (with very low stocking 
rates), with the biggest fall in intensity. This is because Both the intensity and the yield of cattle farms 
fall by respectively 5% and 4%.

Table 7. Statistical significance of changes in Farm Market Gross Margin per hectare and its 
components.

Sampled Simulated

LB UB Mean Mean
Ratio Simulated: 
Sampled

Statistically 
Different

All Farms

Market Gross Margin per Ha 964 980 972 926 0.95 1

9.	 The algorithm was unable to process the analysis at the more disaggregated townland level.
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Sampled Simulated

LB UB Mean Mean
Ratio Simulated: 
Sampled

Statistically 
Different

Market Gross Output Per Ha 1398 1418 1408 1336 0.95 1

Farm Direct Costs per Hectare 434 439 437 409 0.94 1

Dairy Farms  �   �   �   �   �   �

Dairy Livestock Units per Ha 1.83 1.85 1.84 1.87 1.01 1

Dairy Gross Output per Livestock 
Units 1858 1869 1864 1822 0.98 1

Cattle Farms  �   �   �   �   �   �

Cattle Livestock Units per Ha 1.33 1.34 1.33 1.26 0.95 1

Cattle Gross Output per Livestock 
Units 565 568 567 541 0.96 1

Sheep Farms  �   �   �   �   �   �

Sheep Gross Output per Livestock 
Units 1.59 1.60 1.59 1.38 0.87 1

Farm Direct Costs per Hectare 464 469 466 441 0.95 1

NB = LB stands for Lower Bound and UB for Upper Bound.

The Lower Bound represents the minimum level of gross output, gross margin, direct costs, etc. that farms have within the simulation, 
while the Upper Bound represents the maximum level of gross output, gross margin, direct costs, etc. The "Statistically Different" column 
with a value of 1 represents that the change in mean is significantly different from zero and has a probability of less than 5% of being 
random in terms of the mean being different from zero.

5. Discussion and conclusion
This study develops a modelling framework to improve the capacity to incorporate the heterogeneity 
of agricultural systems associated with local natural capital characteristics, in geospatial microsimula-
tion models. Existing farm geospatial microsimulation models do not directly factor in natural capital 
(agronomic and environmental) variables and as result have a tendency to under-estimate geospatial 
heterogenity, which is an important element influencing costs and output. The modelling framework 
is then utilised to investigate the impact of natural capital on farm market gross margin.

In order to account for the geospatial heterogeneity of natural capital, we estimated an income 
generation model that incorporated physical capital, human capital and natural capital. Once the 
farm data are sampled in accordance with administrative data-based geospatial control totals, the 
sampled distribution was adjusted to account for the local natural capital characteristics by adjusting 
each component of the market output and costs. As the new geospatial distribution of natural capital 
characteristics is worse than the distribution within the survey, this adjustment has a tendency to 
reduce average incomes, reflecting the purpose and design of the farm survey used (which focuses 
on the representativity of output and not place). The results show the lowest incomes occur in West, 
North West or Border under either measure. This reflects both the fact that lower production systems 
locate in this area due to the poor agronomic condition (sample) and due to the relative difference in 
extent (simulated). The highest incomes occur in the South and Mid-West, consistent with findings in 
others studies. The biggest adjustments at county level occur in terms of growth 11% (Waterford in 
the SW) to a fall of 23% (Leitrim in the NW). In general, the counties in the East, Midlands and South 
East have the highest adjustment, with the North-West have the biggest reduction, consistent with 
grazing season length.

Decomposing the variation in income between- and within-districts, the majority of income varia-
tion occurs within-area, reflecting preferences, skills and attributes of farms and some differences in 
within-area natural capital. However, adjusting for heterogeneity in natural capital increases the total 
variation and in particular, between-area variation. The change in mean incomes resulting from this 
approach was statistically significant both in total and for individual income components, with the 
biggest changes occurring for sheep farms that are located on a variety of different land types and the 
smallest changes on dairy farms which are more likely to be concentrated on good land.

This paper contributes to the literature on agricultural and environmental modelling through 
the development of the capacity to incorporate natural capital. The paper also contributes to the 
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field of geospatial microsimulation modelling through the advancement of modelling capacity by 
highlighting the importance of incorporating natural capital conditions and extent in the analysis 
of farm incomes and developing for its incorporation. Improving the relationship between agricul-
ture and the local environment in economic models has the added benefit of usability for other 
purposes which rely on this relationship, such as analysis of environment improvement measures on 
farms and supporting policy frameworks. In order to enhance the model in the future by controlling 
the uncertainty of distributions of variables, Confidence Intervals could be used to offer more 
informative way to interpret results (Rahman, 2017; Veroniki et al., 2016). However, the two-stage 
process of sampling and calibration makes it difficult, while the scale makes it quite a computation 
challenge.

Improved consistency between agricultural attributes and natural local capital drivers allows for 
policy analyses of measures to improve the environmental footprint of agriculture. It is also useful in 
understanding the local economic drivers of land use change to (for example) forestry and improves 
our understanding of the contribution of agriculture to rural development. This methodology is scal-
able as the Irish FADN data used in this paper are available in other countries and similar geospatial 
datasets exist in many countries. However, it does rely on geo-referenced farm survey data and on the 
release of geo-referenced farm survey data for research purposes.
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Appendix A

Table A1. Regression model of market gross margin per hectare as a function of natural capital 
variables.

Explanatory Variables Coef. Std. Err. t
Mean (Survey 
Data)

Mean (SMILE-
GIS)

Acid Brown Earth 70% 0.3 0.3 0.92 0.006 0.000

Acid Brown Earth 70% (Coarse 
texture) 0.4 0.3 1.31 0.008 0.000

Acid Brown Earth 75% 0.5 0.2 2.05 0.040 0.000

Acid Brown Earth 90% 1.2 0.4 2.73 0.011 0.000

Basin Peat 100% -0.6 1.5 -0.41 -0.010 0.000

Blanket Peat (Low level) 100% -0.1 0.4 -0.28 -0.001 0.000

Brown Podzolic 60% 0.1 0.2 0.61 0.016 0.000

Brown Podzolic 80% 0.2 0.4 0.49 0.007 0.000

Degraded Grey Brown Podzolic 
50% -0.5 0.3 -1.68 -0.014 0.000

Gley 50% -0.3 0.3 -1.08 -0.011 0.000

Gley 60% 0.2 1.5 0.13 0.002 0.000

Gley 75% 0.4 0.2 1.51 0.024 0.000

Gley 80% 0.1 1.5 0.08 0.002 0.000

Gley 90% -0.4 1.4 -0.29 -0.019 0.000

Grey Brown Podzolic 60% -0.1 0.3 -0.33 -0.004 0.000

Grey Brown Podzolic 70% 0.2 0.3 0.88 0.011 0.000

Grey Brown Podzolic 75% 0.3 0.3 1.01 0.009 0.000

Grey Brown Podzolic 80% 0.5 0.3 1.64 0.017 0.000

Island not surveyed -0.9 0.4 -2.26 -0.011 0.000

Lithosols and Outcropping Rock 
70% 0.8 0.2 3.57 0.084 0.000

Minimal Grey Brown Podzolic 
70% 0.4 0.2 1.48 0.026 0.000

Peaty Gley 70% -1.1 0.3 -4.18 -0.047 0.000

Peaty Podzol 75% -1.2 0.5 -2.65 -0.010 0.000

Podzol 70% 0.4 0.7 0.59 0.001 0.000

Distance to Sea 0.0 0.0 -1.53 -0.112 0.000

Average Temperature -0.1 0.0 -5.09 -1.144 0.000

Average Rainfall 0.0 0.0 -5.7 -1.673 0.000

Flat to Undulating Lowland 
(Mainly dry -0.3 0.2 -1.11 -0.091 0.000

Flat to Undulating Lowland 
(Mainly wet 0.4 1.4 0.26 0.033 0.000

Hill 0.0 0.3 0.09 0.002 0.000

Source: Teagasc National Farm Survey and Simulation Model of the Irish Local Economy.

https://microsimulation.pub/articles/research-article
https://microsimulation.pub/subjects/environment
https://doi.org/10.34196/ijm.00302


 
Research article

Environment

Haydarov et al.	 International Journal of Microsimulation 2024; 17(1); 1–22	 DOI: https://doi.org/10.34196/ijm.00302� 22

Table A2. Gross output estimation.

Dep var

Dairy Dairy Cattle Cattle Sheep Sheep Cereal

Livestock 
Units/Ha

Output per 
livestock unit

Livestock 
Units/Ha

Output per 
livestock unit

Livestock 
Units/Ha

Output per 
livestock unit

Output per 
livestock 
unit

Obs 4966 4957 13,933 13,845 4860 4772 2987

R2 0.4225 0.3841 0.5157 0.2666 0.5976 0.1891 0.2276

Price 0.000045***  �  0.0001***  �  0.0001***  �   �

Fertiliser per ha  �  0.0815***  �  0.0783*** 0.2295*** 0.033* 0.2196***

Purchased 
concentrate 
per Ha  �  0.1525***  �  0.0988*** 0.0147* 0.0981***  �

Share of 
enterprise area 
usage  �   �  -0.2927*** -0.3804***  �   �  -0.125***

Stocking rate for 
the enterprise  �  -0.0812***  �  -0.1345*** -0.2149*** -0.0513**  �

Labour (Log) 0.0542*** -0.0106 0.0794 0.0419*** 0.1001*** 0.0829*** 0.0172

Age (Log) -0.024*** -0.0122 -0.0129** -0.0015 0.0007 0.0267 -0.0347

Has an off-farm 
job  �  -0.0109  �  0.0139 -0.0143 -0.01 -0.0171

Farm size (Log) -0.132*** 0.0565*** -0.1142***  �   �  0.028  �

Has forestry  �  -0.0259  �  -0.0221  �  -0.0499 0.1501***

Extension service -0.0055 0.0077 0.0067 0.0289*** -0.0015 0.0035 0.0052

Agri-
environmental 
Sch 0.0121* 0.0129** 0.0077 0.0001 -0.018* 0.0325* 0.021

Constant -22.671*** -5.7243*** -6.2127*** 19.4944*** -0.8441*** 14.5525 7.0117***

Sigma u 0.1798 0.1936*** 0.2523*** 0.3014*** 0.3075*** 0.4936*** 0.4378***

Sigma e 0.1329 0.1343*** 0.179*** 0.3293*** 0.2426*** 0.4209*** 0.3392***

Rho 0.6466 0.6753 0.6651 0.4558 0.6164 0.5791 0.6249

Source: O’Donoghue (2017).
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