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Abstract We propose a new data-driven way of testing and visualizing dynamic microsimulation 
outcome data. The proposed statistical methodology is based on trajectory analysis (Nagin, 1999), 
which can be used to identify several sub-populations from a population measured longitudinally. 
We briefly introduce the statistical basis of trajectory analysis and discuss its use in the context of 
microsimulation. Finally, we report our results from the Finnish microsimulation model ELSI (Tikan-
mäki et al., 2014; Tikanmäki et al., 2015) to illustrate the possibilities and benefits of this technique. 
Trajectory analysis is available in many statistical software packages (e.g., SAS, R, Stata and Mplus). 
We conclude that trajectory analysis is a useful tool for investigating microsimulation outcomes.  
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1. Introduction
This paper has two goals. First, we present a statistical technique called group-based trajectory anal-
ysis and demonstrate its usefulness in a microsimulation context. We use trajectory analysis to iden-
tify unknown groups or sub-populations that can yield valuable information that is not necessarily 
easily accessible by other means. Second, we use three examples to show how this technique, among 
others, can be used to validate models and to reveal possible misspecification of the microsimulation 
model.

Trajectory analysis has recently gained much popularity in a number of fields including psychology, 
criminology (Nagin and Odgers, 2010; Nagin, 2016; van der Geest et al., 2016), sociology (Hynes 
and Clarkberg, 2005; Don and Mickelson, 2014), education (Kokko et al., 2008), marketing (Mani 
and Nandkumar, 2016) and health sciences (Nummi et  al., 2014; Nummi et  al., 2017a). It has 
increasingly been used in studies on labor market attachment (Peutere et al., 2015; Nummi et al., 
2017b). To our knowledge, trajectory analysis has very seldom been used in a microsimulation context.

Dynamic microsimulation results are often reported using some ex ante classification (e.g., educa-
tion, age, or labor market state). The trajectory approach offers key advantages over ex ante classifi-
cation, which stem from the a priori use of an economic taxonomy. The basic advantage of trajectory 
analysis is that it can reveal latent patterns in longitudinal data that might otherwise remain hidden, 
hence complementing ex ante classifications. Furthermore, the use of a formal statistical method-
ology has the capacity to distinguish chance variation across individuals from real differences caused 
by latent sub-groups (Nagin and Odgers, 2010).

In this paper, we propose two kind of trajectory analysis implementations. First, the data can be 
stratified by various background factors (e.g., by labor market state) and thus the latent sub-groups 
are to be found within the strata. This would yield information on, for example, how common the 
earnings trajectories (by population state) are in the stratas investigated. Second, another way would 
be to classify the trajectory groups by some background factor after trajectory analysis. This would 
yield information on how the ex ante classifier (e.g., labor market state) is divided in trajectory groups.
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Population heterogeneity is an important topic in dynamic microsimulation. Credible heteroge-
neity in a simulated population is a desired property of any microsimulation model. Trajectory analysis 
is a powerful method for demonstrating this heterogeneity. It allows for the analysis of any microsim-
ulation outcome with interesting population heterogeneity. For instance, in the Finnish ELSI model 
we could analyze the individual population state, pension contributions, working lives or incomes. 
The technique is especially suited to cohort-based analysis, but it can also handle several cohorts 
simultaneously.

The approach we propose has a number of advantages. First, trajectory analysis has the poten-
tial to reveal interesting sub-groups of individuals. Second, the technique of trajectory analysis with 
normal distribution (like other members of the exponential family) is a well-established method, with 
software packages readily available for microsimulation practitioners (e.g. Jones et al., 2001; Leisch, 
2004; Grun and Leisch, 2007; Haughton et al., 2009; Muthén and Muthén, 2010). Third, trajectory 
analysis is a flexible method that can be applied to both cross-sectional data (single period measure-
ments), and more importantly, to longitudinal data (multiple periods of measurements). The most 
common metric for indexing time is age or year. Another possible metric would be time before or 
since a life-event.

Descriptive analysis is often inadequate for the purposes of empirical research. Trajectory analysis 
can provide a more rigorous examination with time-dependent covariates or risk factors affecting 
trajectory group membership (Nagin, 2005; Jones and Nagin, 2007). In addition to single outcome 
analysis, trajectory analysis also allows for the simultaneous analysis of multiple outcomes Nagin 
et al., 2016). Indeed, there is now a growing body of research that uses multiple trajectory analysis 
(e.g. Hsu, 2015; Nummi et al., 2017b). Nummi et al. (2017b) provide an example of the simulta-
neous modeling of employment, education, unemployment and parental leaves using a multivariate 
trajectory model. These abovementioned extensions also provide interesting possibilities for micro-
simulation data analysis.

The method has also its disadvantages. First, trajectory analysis can only be performed with 
discrete-time data. Most dynamic microsimulation models are defined in discrete-time, with time-
point intervals of one year (Zaidi and Rake, 2001; Li and O’Donoghue, 2013; Li et al., 2014). This 
leads to a second disadvantage, which can be described as state vs. event microsimulation. Trajectory 
analysis is easiest to implement with the calendar year as the time interval, that is, using state micro-
simulation models.

Trajectory analysis is often applied to normally distributed data, but it is also applicable to discrete 
distributions such as binomial, Poisson, multinomial, etc., making this method a useful tool for the 
exploratory analysis of data sets. In this paper, we show three examples of trajectory analysis in micro-
simulation contexts. These examples cover labor market simulation topics such as wage earnings, 
education and pensions. Trajectory analysis of these outcomes illustrates the technique with different 
data distributions.

2. Trajectory analysis in microsimulation
2.1. Trajectory analysis
Trajectory analysis is, in essence, the application of finite mixture modeling to longitudinal data. It 
can be used for modeling the unobserved heterogeneity of individuals measured longitudinally (e.g. 
Nagin, 1999; Nagin, 2005). In what follows we describe the statistical background for our application 
of trajectory analysis.

The statistical foundation of trajectory analysis is on finite mixture modeling. Well-established in 
the field of statistics, the mixture modeling method concerns modeling a statistical distribution by 
a mixture (or weighted sum) of distributions (see Titterington et al., 1985; McLachlan and Peel, 
2000). Böhning et al. (2007) give examples of the use of finite mixture modeling in various statistical 
applications.

Two basic modeling approaches are called growth mixture modeling and group-based trajectory 
modeling. They share the same analytical objective of measuring and explaining differences across 
population members in their developmental course. The difference between approaches lies in the 
way they model individual-level heterogenity in developmental trajectories.
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Growth mixture models depict the average trend of outcome and individual-specific variation 
around the average trend with random effects using the same parameters of change (Nagin and 
Odgers, 2010).

Our specific aim is to identify individuals or objects in microsimulation data with the same kind of 
unknown developmental profiles (trajectories or sub-groups). The microsimulation population is then 
splitted into several sub-populations. Let ‍yi =

(
yi1, yi2, . . . , yiT

)′
‍ represent the sequence of measure-

ments on an individual i over T periods and let ‍fi

(
yi|Xi

)
‍ denote the marginal probability distribution 

of ‍yi‍ with possible time-dependent covariates ‍Xi‍ . It is assumed that ‍fi

(
yi|Xi

)
‍ follows a mixture of K 

densities

	﻿‍
fi

(
yi|Xi

)
=

K∑
k=1

πkfik

(
yi|Xi

)
,

K∑
k=1

πk = 1 with πk > 0,
‍�

(1)

where ‍πk‍ is the probability of belonging to the sub-group k and ‍fik

(
yi|Xi

)
‍ is the density for the 

kth sub-group. Trajectory analysis can handle discrete or continuous data. The simplest choice is to 
use the Bernoulli distribution {0, 1} for the mixture components ‍fik

(
yi|Xi

)
‍ : but other members of the 

exponential family are often applied as well. It is assumed that given kth sub-group measurements are 
independent. For Bernoulli mixtures we can write

	﻿‍
fik

(
yi|Xi

)
=
∏T

t=1 pyit
itk

(
1 − p1−yit

itk

)
,
‍� (2)

where the probability ‍pitk‍ is a function of covariates ‍Xi‍ . For modeling the conditional distribution of 

‍pitk‍ we use the logistic regression model. For the ith individual, we can then use the equation

	﻿‍
pitk =

exp
(

x
′
i βk

)

1+exp
(

x′i βk

) ,
‍�

(3)

where ‍x
′
i

(
t
)
‍ is the tth row of ‍Xi‍ and ‍βk‍ is the parameter vector for the kth sub-group. For the anal-

ysis of continuous data, one alternative is the multivariate normal distribution

	﻿‍
fik

(
yi|Xi

)
=
(
2π

)− pi
2 |Σik | −

pi
2 exp

{
− 1

2
(
yi − µik

)′
Σ−1

ik

(
yi − µik

)}
,
‍� (4)

where ‍µik‍ is a function of covariates ‍Xi‍ with parameters ‍βk‍ and ‍Σik = σ2
k I‍ a covariance matrix within 

kth sub-group. Thus, the measurements are assumed to be independent within sub-group k, with the 
variance ‍σ

2
k ‍ . One advantage of this assumption is that it considerably simplifies the likelihood function 

and thus yields a computationally lighter and more stable analysis.
For modeling the trajectory mean in time t, simple linear models are usually applied, e.g. low-

degree polynomials. For our three examples we used cubic polynomial model

	﻿‍ x
′
βk = β0k + β1kt + β2kt2 + β3kt3‍� (5)

to model the development within the sub-group k in time (age). The mean model can also include 
other time-dependent covariates or time-stable covariates (risk-factors).

For parameter estimation, Maximum Likelihood (ML) estimates can be calculated by maximizing 

the log-likelihood 
‍

N∑
i=1

fi
‍
 over unknown parameters ‍βik‍ and ‍σk, k = 1, . . . , K ‍ (see e.g. Nagin, 1999; Jones 

et al., 2001; Jones and Nagin, 2007). In most software packages, the method used for ML estima-
tion is the EM (Expectation and Maximization) algorithm (see Dempster et al., 1977; McLachlan and 
Peel, 2000). The algorithm in an iterative technique involving two steps. E step finds the expected 
log likelihood under current parameter estimates, the subsequent M step maximizes the expected log 
likelihood function. These steps are iterated until the estimates converge. When applied to trajectory 
analysis, the E step calculates the posterior probability for sub-group membership

	﻿‍
wik = πkfk

(
yi |Xi,∅k

)
f
(

yi |Xi,∅k
)

‍�
(6)

under all parameter estimates ‍̂∅k‍ . The estimated sub-group probabilities are then
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	﻿‍
π̂k = 1

N

N∑
i=1

ŵik
‍�

(7)

Once the model parameters have been estimated, the posterior probability estimates provide a 
way to assign each individual to a specific sub-group or trajectory. Individuals can be assigned to the 
specific sub-group in which their posterior probability is highest. From the equations, we see that the 
assignment of individuals into groups takes into account regression parameter estimates, the number 
of groups, probability distribution, membership probability estimates and time span of longitudinal 
dataset. These are major topics in trajectory analysis and need careful consideration from microsimula-
tion practitioner. Nagin (2005) discusses the selection of the number of groups (p. 78–87) and related 
statistical information criteria (p. 63–76) and the question of conditional independence (p. 26–27).

The question of groups as real entities is discussed in Nagin and Odgers (2010) and Nagin (2016). 
Nagin (1999) discusses the use of group membership probabilities in the calculations, as well as the 
links between group membership probabilities and other time-dependent covariates besides age (or 
time). The nature of trajectory groups in growth mixture modeling and group-based trajectory analysis 
is discussed in Nagin, 2005, pp. 54–56), Nagin (2016) and Nathalie et al. (2017). Don and Mick-
elson (2014) discuss the good practices of trajectory analysis, especially in terms of model selection.

Note that the sub-groups revealed by trajectory analysis are not fixed constructs. They are just 
approximations of a more complex reality. Each individual belong to a specific group with a certain 
probability. It would be good if we could investigate the fit of the assumed model using the identified 
trajectory groups. However, since the groups are based on maximum posterior probability, this would 
probably introduce some correlation to within-group residuals, as the actual group could also contain 
individuals from other groups with a small probability or weight. The correct approach from a statis-
tical point of view, however, would be based on the investigation, using alternative covariance struc-
tures (for example, likelihood-ratio type test statistics or some other information criterion). However, 
this kind of testing is impossible in Nagin’s basic model. This topic has been discussed in Nagin and 
Odgers (2010) and Nagin (2016).

As with any statistical analysis of dynamic microsimulation outcome data, a change in the period 
of observation would naturally change the results of the model. The trajectory groups could also be 
affected to a certain extent. However, we believe that in our examples the basic main grouping struc-
ture would remain quite similar.

2.2. Finnish ELSI microsimulation model
ELSI is a longitudinal microsimulation model (Tikanmäki et al., 2014; Dekkers and Van den Bosch, 
2016) that is used to assess the development of the statutory pensions in Finland. The dynamic 
ageing model has been developed at the Finnish Centre for Pensions, a statutory co-operation body 
providing research and expertise services related to the Finnish pension system.

ELSI model has been designed to assess the future earnings-related pensions and the national 
pensions (Tikanmäki et al., 2017). It can also be used to analyze changes in the pension system and 
in the underlying demographic or macroeconomic conditions. One of its uses has been to assess the 
distributional effects of the pension reform of 2017 (Tikanmäki et al., 2015).

The Finnish pension system is mainly based on pension rights accrued on the basis of the individ-
ual’s life-time earnings. The only exception is the survivor’s pension, which accounts for no more than 
6% of total pension expenditure. The ELSI model is therefore based on individual-level information 
and calculations of pensions received in one’s own right. The model comprises both pension recip-
ients and those still working. The model simulates each individual’s working life prior to retirement.

The base population consists of all adults aged 18 or over covered by the social insurance system 
in Finland. Most of the material is drawn from administrative records maintained by the Finnish Centre 
for Pensions and the Social Insurance Institution of Finland. Information on educational level from 
Statistics Finland is also added to the model. The ELSI model provides the opportunity to run large 
populations. For the present analysis we used a random sample of 32% of the base population, which 
in numerical terms translates into 1.5 million individuals in the baseline year of 2012. The population 
is then simulated until 2085. Deceased people remain in the model and a new cohort as well as new 
immigrants enter the model each year. Consequently the population increases over the course of the 
simulation.
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The ELSI model has a modular structure (Figure 1). Each colored box represents a module of the 
model, while white boxes represent external sources of information. There are no feedback loops 
from later to earlier modules. The simulation starts from the population module, followed by the 
earnings module, pension modules, and the taxation module, and finally brings together the results.

The population module has several functions. It simulates population and labor market transitions 
as well as educational changes. The population module is based on transition probabilities that are 
estimated from historical data for 2010–2014. The module also uses Statistics Finland’s official popu-
lation forecast to replicate general trends in the sample population. Transition probabilities, with one-
year time steps, are by and large deterministic, that is, based on exogenous information.

In the population module, we simulate a new population or labor market state for each individual 
based on transition probabilities. There are 22 states in the model, the most important of which are: 
active (employed), inactive, unemployed, various pension states for different pension benefits, and 
deceased.

The labor market transitions are of Markovian type, which means that the transition probabilities 
are based on current state rather than former history. However, it is possible to add memory to a 
Markov process by extending the state space. For instance, in model ELSI we have three different 
active states. One for those employed first consecutive year, another for those employed second year 
and third one for the rest. Hence, unemployment risks may be higher for those who do not yet have 
an established labor market position.

Education is also simulated in the population module. Post-basic education dynamics is based on 
age and gender-specific transition probabilities. Changes in education level are possible at any age, 
although they are not very common after age 35.

Figure 1. Structure of the ELSI microsimulation model
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The transition probabilities are updated each simulation year using the population level informa-
tion produced by the semi-aggregated LTP model (Tikanmäki et al., 2017). There is thus a simple 
alignment of microsimulation outcomes to macro level aggregates.

Wage earnings are simulated in the earnings module. Wages are simulated for each individual 
annually based on the labor market state and an underlying earnings-equation, which is a time-series 
model with a stochastic component. The earnings equation takes also into account gender, age and 
level of education. Wages are simulated for active workers and those in partial retirement. The earn-
ings module is described in Tikanmäki et al. (2014).

The earnings-related pension module calculates pension amounts based on the simulated time of 
retirement (retirement age) and life-course earnings. The pension calculation takes no shortcuts but 
is as detailed as possible given the data in use. The national pension and guarantee pension amounts 
are calculated as a residual of the earnings-related pension, since they are income tested. The calcu-
lation of national pensions is described in Sihvonen (2015).

The taxation module finalizes the substantive simulation. The previous modules have produced 
gross wages and pensions. In the taxation module, the current (2016) rules for income taxation are 
applied to both simulated wages and pension earnings. The calculation of income taxes is described 
in Sihvonen (2015).

After the simulation run, the results are analyzed in the results module, which calculates aggre-
gate results over the course of the simulation, based on individual-level outcomes. Measures of the 
distribution (mean, percentage points, Gini coefficient) of pensions can be produced by ex ante 
classifiers such as gender, level of education and year of birth. Aggregate measures on the dura-
tion of working life and partition of life-course into active and passive stages are also calculated 
in the result module. The module collects individual-level output data containing information on 
labor market state, wage earnings, residence, education level, pension earnings, pension benefit, 
working life, pension accrual, etc. Therefore the material is also available for the statistical anal-
ysis illustrated in this paper. The proposed statistical technique could be used with many other 
outcomes as well.

In the following analysis we use a longitudinal individual-level data set that covers the period 
from 2008–2085 with a 25% sub-sample of the original output data. The analysis is based on three 
outcomes: wage earnings, education level and pension earnings. The wage and education trajectories 
are presented for the male cohort born in 1995 and pension trajectories for the male cohort born in 
1960. With trajectory analysis, it would be possible to analyze several cohorts at the same time so long 
as the data is longitudinal.

Similar longitudinal data is produced in many other dynamic microsimulation models, too. For 
example, the Swedish SESIM model and the Norwegian MOSART model are in this respect similar to 
ELSI, providing rich individual or household level labor market output data (Fredriksen and Stølen, 
2007; Klevmarken and Lindgren, 2008; Flood et al., 2012).

2.3. Trajectory model selection
Choosing the number of mixture components K is an important stage of finite mixture modeling. The 
trajectory method requires the researcher to specify the assumed number of sub-groups in the data. 
The optimal number of sub-groups K can be assessed using information criteria, which are widely 
used in this context.[1] One commonly used criterion to assess the model fit is the Bayesian infor-
mation criterion (BIC). The model with largest BIC is preferred (SAS implementation). One may also 
calculate the group-specific average posterior probability over individuals to measure the fit. If this 
values exceeds the minimum threshold (at least 0.7) the fit is considered satisfactory. Nagin (2005, p. 
63–77) provides an overview of model selection in trajectory analysis context. Ultimately, meaningful 
real-world interpretations of sub-groups requires not just information criteria, but also theoretical 
evaluation and good judgment.

1.	 SAS package PROC TRAJ counts BIC and AIC routinely.There are other information criteria, like cross-
validation available, if the number of sub-groups is critical for the microsimulation practitioner (see Nielsen et al., 
2014).
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In trajectory analysis missing data is considered 
missing completely at random according to the 
taxonomy layed by Little and Rubin (1987). Soft-
ware packages handle missing data in such a way 
that all available data is used in the estimation. In 
other words, all individuals or objects with some 
missing longitudinal data values are included in 
the analysis.

From Table 1 we can see the BIC values of our 
example analyses on three outcome-variables 
(earnings, education and pension). The BIC score 
indicates that, a five-group solution fits the wage 
earnings and pension variables, while for educa-
tion BIC increases with more groups. However, 
increasing the number of education groups further 
would yield some infinitesimal groups. Therefore 
our choice is the five-group solution for the wage 

earnings and pension outcomes, and the six-group solution for the education outcome variable.
In this study the computations were carried out using SAS software package with accompanying 

PROC TRAJ application, an easy to use PC SAS procedure for analyzing Nagin’s model (e.g. Jones 
et al., 2001; Jones and Nagin, 2007; Andruff et al., 2009).[2 Appendix A.1 gives an example of the 
programming code for wage earnings trajectories (Example 1, k=5).

The trajectory plots (Figures 2–4) present conditional means of time points calculated over the 
simulation period. Relative sizes ‍̂πk‍ of the sub-groups are also presented in the figures. These plots are 
the main tool for interpreting the results obtained. The estimated model is summarized in Appendix 
(A.2), which includes group-specific parameter estimates. The SAS procedure also produces a confi-
dence interval (95%) and model-predicted values by sub-group if necessary.

2.	 SAS and STATA (see Jones and Nagin, 2013) trajectory analysis package can be downloaded from the web-
site: https://www.andrew.cmu.edu/user/bjones/. R package for trajectory analysis is Flexmix (see Leisch, 2004).

Table 1. BIC scores and number of sub-groups k

Outcome 3 4 5 6

Earnings (N=3,325) –50288.7 –48178.8 –45974.7 –46375.9

Education (N=13,173) –549399.6 –544342.9 –537412.2 –535026.8

Pension (N=10,761) –834881.4 –811092.8 –786210.9 786234.1

Notes: BIC = log(L) –.5 * log(n) k, where L = log likelihood, n = sample size and k = number of parameters.

Figure 2. Earnings trajectories

Figure 3. Earnings trajectories, k=5

https://microsimulation.pub/articles/research-article
https://microsimulation.pub/subjects/methodology
https://microsimulation.pub/subjects/dynamic-microsimulation
https://doi.org/10.34196/ijm.00198
https://www.andrew.cmu.edu/user/bjones/


 
Research article

Methodology; Dynamic microsimulation

Salonen et al.	 International Journal of Microsimulation 2019; 12(2); 3–17	 DOI: https://​doi.​org/​10.​34196/​ijm.​00198� 10

It must be emphasized that the trajectories in the following examples are group means, which 
indicates that there is a range of individual tracks around the trajectory curves. Software packages 
routinely output the group estimates and confidence intervals to visualize within-group population 
heterogeneity. For the sake of readability, the model fit curves and confidence intervals are not 
presented in this paper.

In the examples we use cubic age model (see Equation 5). The choice depends on the assumed 
development of the data over time. One advantage in PROC TRAJ is that the age or time model can 
be group-specific, which means that for example one group can be fitted with a second order polyno-
mial model, whereas another group can be fitted with a cubic model etc.

3. Examples
3.1. Earnings trajectories: binary outcome
For this example, we have chosen a young cohort to illustrate a simulated life-course. The cohort, born 
in 1995, enters labor markets at age 17 (year 2012), and subsequent life-course including individual 
wage earnings is simulated in the ELSI model’s population and earnings modules.

The example shows a trajectory analysis with binary outcome data. Individual yearly wage is dichot-
omized (yes = 1/no = 0), so wage earnings could also be interpreted as employment. In terms of 
content, wage earnings could be analyzed without transformations using continuous data (euros).

The BIC score (Table 1) indicates that a five-group solution yields the best fit for the earnings 
outcome, but we also present the solutions for three and four-groups solutions. Figure 2 shows that 
the relative sizes ‍̂πk‍ vary somewhat with an increasing number of groups. Nevertheless all solutions 
have essentially the same major sub-groups.

In terms of content, we can see that there is a large group (k = 3: 49%, k = 4: 33% and k = 5: 29%) 
with strong labor market integration, or a strong earnings profile, until retirement age. Other groups 
show an early declining trend in employment. Labor market integration is weak in one group (k = 3: 
12%, k = 4: 10% and k = 5: 8%), especially at older age. Unemployment and permanent disability draw 
individuals out of employment prior to old-age retirement. Retirement age for old-age pension in this 
cohort is 67 years and 9 months. Partial old-age pension can be drawn three years before retirement 
age.

3.1.1. ELSI model recalibration
This trajectory analysis experiment revealed a slight misspecification in the ELSI model’s earnings 
module (see spikes at age 65 in all trajectory solutions). The spikes are visible in mean-based trajecto-
ries, but they would not be seen in fitted means models. This goes to show how useful group-based 
mean curves can be in revealing model misspecification.

In the earnings module the mechanism for working after retirement did not work as intended. 
During the course of simulation, many of those who had stopped working earlier suddenly decided 

Figure 4. Education trajectories
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to return to work after drawing their pension (Figure 2). Of course, such behavior is not plausible on 
a larger scale.

The Finnish pension system allows full-time employment even after retirement on an old-age 
pension. However, wage earnings for old-age pensioners are typically quite low. The misspecification 
therefore did not have a major impact on the main results and was not observed in comparison with 
the LTP macro model.

In the ELSI model earnings are calibrated with the LTP model. In practice, this is done by comparing 
projected average earnings each year by gender, population state and age. Any deviations imply 
changes in the ELSI model’s parameters.

In the LTP model, working after retirement is not modeled in detail, and the relevant point of refer-
ence is provided by the corresponding statistical figures. In the ELSI model, the share of new retirees 
working after retirement is the same as in the observed statistics. Trajectory analysis showed that the 
pool of retirees working after retirement also included individuals who had not worked in the year 
preceding retirement, which was not intended.

Following the trajectory analysis of simulated earnings, the ELSI model was recalibrated appropri-
ately. There was no change in the aggregate figures, namely wage sum and number of people working 
after retirement.

Trajectory analysis is not yet routinely part of ELSI model testing, but it could be incorporated as 
part of its validation procedures.

3.1.1.1. Composition of trajectory groups
Checking the composition of the groups is a good way to validate also the trajectory analysis results. 
It is good practice to cross-tabulate the trajectory groups by the available background factors of the 
microsimulation. We have added an example which shows the labor market state or population state 
of earnings groups (k = 5) at age 60 in the simulated life-course (Figure 3). Depending on the available 
information of the microsimulation model, also other background factor could be cross-tabulated.

The labor market states (Table 2) confirm the earnings trajectory results. The high and stable wage 
earnings (employment) group G4 (29%) consists of people who are mainly (89.9%) in active labor 
market states. The weak attachment group G1 (8%) consists of individuals who had a disability or 

Table 2. Composition of earnings trajectories at age 60, per cent

G1 (8%) G2 (11%) G3 (17%) G4 (29%) G5 (35%) Total

Active first year 0.8 2.3 2.3 0.5 3.4 2.1

Active second year 0.4 0.6 0.7 0.3 0.9 0.6

Active (working) 2.3 51.1 1.2 89.9 54.2 50.6

Unemployed or in education 1.5 9.7 6.2 1.6 10.4 6.5

Sickness benefits . 1.1 0.4 . 2.5 1.1

Partial disability pension and active . 1.4 0.2 2.3 0.4 1

Partial disability pension and non-active 0.8 1.1 0.9 . 0.7 0.6

Full disability pension 23.4 2.8 26.9 0.5 2.9 7.9

Full disability pension second year 1.1 1.4 3.4 . 2 1.6

Old-age pension . . 0.5 0.1 0.7 0.4

Only national disability pension 15.5 . . . . 1.2

Out of labor markets I 18.9 1.4 17.2 0.3 1.8 5.3

Out of labor markets II 14.3 . 2.5 . 0.8 1.9

Inactive 5.7 18.8 30.8 1.5 15.5 13.8

Deceased 15.5 8.2 6.9 2.8 3.8 5.5

Total 100 100 100 100 100 100
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inactive status at the time. Also the share of deceased (15.5%) is higher in this group than in the 
other groups, which is quite natural. Another weak attachment group is G3 (17%), where the share of 
disabled and inactive individuals is relatively high compared to the other groups.

3.2. Education trajectories: class outcome
In this second example we continue to study the young cohort born in 1995 and illustrate a simulated 
life-course in terms of education level. This cohort finishes compulsory education at age 16 (in 2011). 
The subsequent education dynamics is simulated in the education module of the ELSI model.

The example shows a trajectory analysis with class-level outcome data. The distribution of the 
levels of education skewed to left (low education), therefore the outcome is modeled using the zero-
inflated Poisson model. Yearly individual education information records the highest level of education. 
In practice, each individual level of education either remains unchanged or rises during the course of 
the simulation. Individuals enter the model at age 18 when 99% are at the basic education level. The 
ELSI model includes four levels of education: 0 = basic education (ISCED 0–3), 1 = secondary educa-
tion (ISCED 4), 2 = lower academic degree (ISCED 5, 5B) and 3 = higher academic degree (ISCED 5A, 
6).

The BIC score (Table 1) indicates that a six-group solution yields the best fit for the education 
outcome, but we also present the four-group and five-group solutions. Figure 4 shows that with the 
six-group solution, the smallest group comprises no more than 2% of the population.

The trajectory means clearly show how education dynamics play out in practice. For example, 
education increases sharply until around age 30, and then is virtually stagnant at age 40. In the four-
group solution, the results are dominated by the final education level. The four-group and five-group 
solutions show adult and further education in action, with 6–7% of the cohort still on an upward educa-
tion trajectory at later ages (k = 5: 6%, k = 6: 7%).

Overall, we have observed that 20% have a low education, 40% complete secondary education, 
21% complete a lower university degree and 15% a higher university degree.

3.3. Pension trajectories: continuous outcome
The cohort in this third example was born in 1960. For this cohort, earnings, labor market state, 
accrued pensions and disability pension data are covered up to age 52 (in 2012). Thereafter, pension 
stock and new pensions are simulated in the ELSI model’s earnings-related pension module.

The example shows a trajectory analysis with continuous normal data. The outcome variable is 
earnings-related pension (log euros/month), excluding survivor’s pensions, expressed in nominal 
value. If an individual is not retired (not yet retired or deceased) the outcome value is zero, otherwise 
the individual is retired and receives a pension (Figure  5). The level of pension is determined by 
current pension rules for different types of pension benefit, such as disability pensions, partial old-age 
pensions and old-age pensions.

Pension levels are affected by two factors. First, the most important factor that affects all retirees 
is indexation: earnings-related pensions are index-linked to prices (80%) and wages (20%). Second, 

Figure 5. Pension trajectories
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some individuals continue to work while drawing their pension, which accrues additional pension 
benefits.

The BIC score (Table 1) indicates that the five-group solution yields the best fit for the pension 
outcome, but we also present the solutions for three-group and four-group solutions.

Trajectory analysis reveals several substantive issues. First, pensions increase as the cohort ages and 
approaches minimum retirement age at 64 years and 5 months (persons born in 1960 can retire flex-
ibly between ages 64 years 5 months and 69 years). Pensions taken earlier are for the most part either 
disability pensions or partial old-age pensions. Second, the trajectories are affected by mortality as all 
trajectory means go to zero with the death of individuals in the group. For instance, one group (k = 5: 
14%) dies early and its pension level remains low. This group, along with (k = 5: 11%), enters disability 
pensions at a higher rate than other groups. In addition, some groups have a higher life expectancy. 
The group with the highest life expectancy (k = 5: 18%) also has the highest pensions. Third, there is 
some indication of segregation among pensioners here.

It is also worth noting that pension indexation rules increase pensions in those sub-groups where 
life expectancy is high. Finally, an increase in the number of groups leads to the emergence of some 
interesting sub-groups. The early transition to disability pension is evident in the five-group solution 
(k = 5: 11%).

4. Conclusion
We have applied finite mixture modeling to longitudinal data in the context of dynamic microsimula-
tion. It is useful in visualizing dynamic microsimulation results because it demonstrates, within a formal 
statistical structure, population heterogeneity in simulated datasets. Furthermore, the sub-groups 
identified in the analysis may reveal model misspecifications if such issues are present.

Our first goal was to illustrate the results of dynamic microsimulation, which are often presented 
as statistical moments or other distribution measures for a given population. Statistical moments 
presented on the basis of ex ante classification rules (e.g. gender, level of education, occupation or 
region) are a common way of reporting results for specific population sub-groups. We have shown 
how trajectory analysis can be applied as a data-driven method for illustrating longitudinal results in a 
novel way. These two ways of presenting results are mutually complementary.

Our second goal was to test the individual-level or object-level outcomes of dynamic microsimu-
lation. Testing should be understood here by locating groups with unwanted or otherwise peculiar 
outcomes. Microsimulation easily yields biases and model misspecification. Microsimulation practi-
tioners apply various techniques to calibrate models and to locate misspecification. Trajectory analysis 
could also be a useful tool in testing simulation model assumptions, as model misspecification may be 
revealed in developmental trajectories. Trajectory analysis together with other testing methods can 
improve microsimulation model reliability, especially in connection with large-scale revisions of model 
parameters.

There are some limitations with the proposed technique. First, it takes some effort to analyze all the 
cohorts included in the microsimulation model. It might be advisable to focus on some key cohorts if the 
simulation model assumes similar parameters across cohorts. Second, given the computational require-
ments of the EM algorithm, it is apparent that extremely large data sets (hundreds of thousands of indi-
viduals) should be avoided. A fraction or sample of the simulated data set usually reveals the underlying 
sub-populations with sufficient reliability. Third, it is necessary to mention conditional independence, 
even though this is not a serious drawback in a microsimulation context. Finally, basically trajectory anal-
ysis cannot handle nonlinear models. The group-specific regression model needs to be linear in param-
eters. However, reasonable approximations can often be provided by low-degree polynomial models.

Trajectory analysis is also a highly flexible method. In our case we performed the analysis for one 
outcome at the time, but the technique and software is in place to model several outcomes at the 
same time. This is called multi-trajectory modeling, which identifies groups of individuals or objects 
that follow similar trajectories across multiple outcomes. For example, it would be possible to analyze 
income, education and labor market status simultaneously. This would yield a slightly different prob-
ability for belonging to a specific group. Another possibility would be to add time-dependent (e.g. 
earnings) or time-stable (e.g. gender, year of birth or nationality) covariates alongside age or time 
polynomial. This would be a case of multinomial logistic regression within a population sub-group, 
and the result would consist of risk factors influencing group membership.
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Appendix

A.1 An example SAS PROC TRAJ-code.
Earnings trajectories: Five-group solution

•	 Males born 1995
•	 Simulated yearly wage earnings 2015–2080
•	 Binary outcome 1 = some wage, 0 = no wage
•	 WMALE_1995 is the individual level data set with yearly observations on binary wage 

(bwage) and age (age).

The PROC TRAJ produces four output datasets. OP includes the group mean estimates 
and confidence intervals (95%). OS includes the mixture components (sizes of the sub-
groups). OF includes individual-level information on group posterior probabilities and 
group assignment. This is an important data set where we can merge any other relevant 
background information. Finally, OE includes the regression model coefficients and 
information criteria (AIC and BIC). ITDETAIL statement shows the progression of maximum 
likelihood estimation in the SAS log window.

Algorithm 1: PROC TRAJ.

1: PROC TRAJ DATA=WMALE_1995 OUTPLOT=OP OUTSTAT=OS OUT=OF OUTEST=OE ITDETAIL;
2: ID idno;
3: VAR bwage2015-bwage2080;
4: INDEP age2015-age2080;
5: MODEL logit;
6: NGROUPS 5;
7: ORDER 3 3 3 3 3;
8: RUN;

The actual model is specified with VAR, INDEP, MODEL and ORDER statements. The 
MODEL logit states that we analyze binary outcomes. Other possibilities are censored normal 
outcome (cnorm) and zero-inflated Poisson outcome (zip). NGROUP states the number of 
sub-groups. ID states the number of individuals. ODRER defines the number of mixture 
components (=NGROUPS) and respective degree of age-polynomial. Each sub-group can 
have different degrees of age-polynomial.

Algorithm 2: TRAJPLOT-macro.

1: %TRAJPLOT(OP,OS,,);
2: RUN;
3: DATA WMALE_1995; MERGE WMALE_1995 OF (KEEP=idno group); BY idno;
4: RUN;

The TRAJPLOT macro statement invokes the result plot, which by default plots the 
trajectory means and their estimates. Finally, individual level results are collected and merged 
with microsimulation output dataset.
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A.2 Summary of Estimated Model: Outcomes, 
Groups, Parameter Estimates and their Standard 
Errors.

Outcome Groups ‍̂β0‍ ‍SE(β̂0)‍ ‍̂β1‍ ‍SE(β̂1)‍ ‍̂β2‍ ‍SE(β̂2)‍ ‍̂β3‍ ‍SE(β̂3)‍
Earnings 1 –0.60816 0.93616 0.17156 0.07229 –0.00845 0.00173 0.00008 0.00001

Earnings 2 10.77241 0.7512 –1.05243 0.05715 0.03048 0.00135 –0.00026 0.00001

Earnings 4 –24.0041 0.69707 1.88334 0.05421 –0.04084 0.00128 0.00026 0.00001

Earnings 5 2.89272 0.93197 –0.55508 0.08212 0.02763 0.00225 –0.00029 0.00002

Education 1 150.7634 13.69866 –23.324 1.03504 0.60943 0.01352 –0.00442 0.00018

Education 2 –38.2479 1.84202 1.95442 0.10906 –0.03343 0.00214 0.00019 0.00001

Education 3 –1.40435 0.08235 0.09431 0.00638 –0.00206 0.00016 0.00001 0.00000

Education 4 –3.82746 0.09413 0.27969 0.00712 –0.00568 0.00017 0.00004 0.00000

Education 5 –6.14041 0.09384 0.46159 0.00701 –0.00958 0.00017 0.00006 0.00000

Education 6 –34.1529 1.02762 2.02103 0.06446 –0.03841 0.00133 0.00024 0.00001

Pension 1 1352.226 1.29912 –66.1983 0.03537 1.07053 0.0006 –0.00572 0.00001

Pension 2 –220.279 3.93005 5.68868 0.15254 –0.03308 0.00196 –0.00003 0.00001

Pension 3 –464.879 3.77328 14.13735 0.14801 –0.12224 0.00197 0.00024 0.00001

Pension 4 27.60321 4.88433 –1.86771 0.19721 0.03987 0.00262 –0.00025 0.00001

Pension 5 –127.459 2.91581 3.18956 0.10992 –0.01691 0.00136 –0.00002 0.00001
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