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ABSTRACT: This paper summarises some of the latest developments in methods to estimate and 

validate spatial microsimulation models. The paper also attempts to identify where the potential is 

for new areas of development in spatial microsimulation models, based on the author’s reading of 

the spatial microsimulation landscape in 2018. The methods outlined in this paper are identified as 

significant developments in the field, and include a number of new methods for calculating or 

adding indicators to a spatial microsimulation model; as well as new methods of validation and 

estimating confidence intervals. Potential new areas of research include further development of 

methods for calculating confidence intervals; work on getting spatial microsimulation into the 

mainstream of policy analysis; work on linking models to provide input into managing complex 

problems in society; and work on using big data in spatial microsimulation models. 
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1 INTRODUCTION 

Spatial microsimulation adds a spatial element to traditional microsimulation models, as the spatial 

element is important for policy analysis. In particular, indicators like housing stress and incomes 

are highly spatially clustered (Tanton, Vidyattama, & Mohanty, 2015). Using spatial 

microsimulation to derive estimates of these indicators for small areas provides a more targeted 

analysis compared to using national indicators. It is also important to view results at a spatial scale, 

as the public, policy makers and politicians are interested in what is happening in their electorate, 

or in their suburb.  

It could be argued that the idea of spatial microsimulation was developed around the same time 

that Orcutt developed microsimulation (Orcutt, 1957), as Hägerstrand (1957) developed the first 

geographical application of microsimulation to study internal migration in central Sweden. This 

was further developed by Hägerstrand (1967) which used microsimulation techniques to study the 

spatial diffusion of innovation. Nearly a decade later, Wilson and Pownall (1976) developed a 

spatial modelling framework to represent the urban system based on the micro level 

interdependence of households and individuals. 

Much of the early development of spatial microsimulation was at the Department of Geography, 

University of Leeds (see, for example, Clarke & Wilson (1985). There was then significant activity 

in the field in the 1990’s (Ballas, Clarke, & Turton, 1999; Clarke, 1996; Clarke, Kashti, McDonald, 

& Williamson, 1997; Williamson, Birkin, & Rees, 1998). Reviews of methods on the development 

of spatial microsimulation are provided in a number of published papers (Hermes & Poulsen, 2012; 

O’Donoghue, Morrissey, Lennon, 2014; Tanton, 2014; Tanton & Clarke, 2014). This paper aims 

to update these earlier summary papers with some of the latest developments in spatial 

microsimulation over the last few years; but also looks at areas where spatial microsimulation may 

develop in future. I want to look at where spatial microsimulation may head in the next ten years. 

This second aim is very much my view, based on a broader reading of the landscape. 

In terms of methodological developments, this paper considers two aspects: the method for 

developing a synthetic population for a microsimulation model, and recent developments in 

validation, including calculating confidence intervals. These are important in determining the 

reliability of any model. 

In terms of where spatial microsimulation may go in the future, I identify four areas: 
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 Estimation of variability: this is a very new area, and more work needs to be done in deriving 

an approach that is stable and can be used across all models, like the replicate methods or 

Monte Carlo methods used to derive confidence intervals in national microsimulation 

models. 

 Linked models: there has been much recent work on linking computable general 

equilibrium (CGE) and microsimulation models, and some work on linking CGE to spatial 

microsimulation models, but the next step is to bring together a range of models from 

different disciplines to provide input into different policy options for resolving complex 

problems. 

 Making results from spatial microsimulation models more palatable to Government policy 

makers and the public: spatial microsimulation has not had the same take up in Government 

as tax/transfer microsimulation. This is changing, for example Stats Canada now uses a 

spatial microsimulation model for demographic forecasting (Statistics Canada, 2010a, 

2011a), but there is still work to be done in this area in terms of convincing policy makers 

and politicians that spatial microsimulation is a useful policy tool. 

 Use of big data: this includes data from smart electricity meters, smart card transport data, 

and data from Internet of Things (IoT) devices. Smart cities use data from transport 

networks, online devices like environment monitoring, identifying parking spaces, etc. 

These large amounts of data are unit level, and normally spatial, so are perfect for use in a 

spatial microsimulation model. Smart energy meters are already being used in multilevel 

modelling (Anderson, Lin, Newing, Bahaj, & James, 2017), so extending this to combine 

big data for predictive and “what if” modelling with a spatial microsimulation model would 

be a next logical step. 

The rest of this paper is structured with Section 2 on development of methods; Section 3 on 

potential future directions of spatial microsimulation; and conclusions (Section 4). 

 

2 DEVELOPMENT OF METHODS 

Since 2014 when the last summary papers were written (O’Donoghue, Morrissey, Lennon, 2014; 

Tanton, 2014; Tanton & Clarke, 2014), some new methods for conducting spatial microsimulation 

have come up in the literature. These include a penalised maximum entropy approach (Rose & 

Nagle, 2017), a multilevel approach (Fenton, 2016), an approach called Fitness Based Synthesis 

(FBS) developed by Ma and Srinivasan (Ma & Srinivasan, 2015a); and an approach that is a 
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rediscovery and development of previous work (Lymer, Brown, Harding, & Yap, 2009) using a 

standard technique to develop the synthetic population, but then imputing new variables (Namazi-

Rad, Tanton, Steel, Mokhtarian, & Das, 2017; Philips, Clarke, & Watling, 2017a). 

New methods of validation have also come up in the literature since 2014, with one applying the 

Bland-Altman test used in the health field (Timmins & Edwards, 2016a) and others looking at how 

to model confidence intervals and measures of variability in a spatial microsimulation model 

(Rahman, 2017; Tanton, 2015; Whitworth, Carter, Ballas, & Moon, 2017). 

2.1 New methods of calculating a synthetic population 

One of the methods in spatial microsimulation is Iterative Proportional Fitting (IPF), where initial 

weights are calculated based on one benchmark table (the marginal totals to match), and then 

adjusted based on a second benchmark table; a third table, and so on until the last table is reached, 

when the procedure returns to the first table and adjusts to these benchmarks again. The process 

iterates until the weights sum to all of the benchmark tables to some level of accuracy. The problem 

with IPF is that a measure of the quality of the final estimates is not available; and the procedure 

can struggle with sparse populations, so areas where there are not many people in a particular cell 

in the benchmark table. 

Rose & Nagle (2017) describe a penalised maximum entropy (P-MEDM) approach to developing 

a synthetic population. This approach is similar to IPF, but instead of exactly summing the weights 

to a known marginal total, an element of error is incorporated into the calculation. This reduces 

overfitting problems with IPF when using sparse populations, and by introducing a measure of 

uncertainty, a measure of quality can be produced. The P-MEDM approach also requires 

knowledge of the variance in the benchmark tables to estimate this error. Rose & Nagle (2017) fit 

the P-MEDM model to estimate infant mortality for Bangladesh, using the Bangladesh 

Demographic and Health Survey (BDHS) and Census data for the benchmark tables. The final 

benchmarks chosen are school attendance, literacy, employment, source of drinking water, 

electricity connection, housing tenancy, average size of household, rural/urban and administrative 

division. 

Internal validation results from the P-MEDM model are encouraging, however results from the 

validation to an external survey are mixed. The authors consider that some of this may be due to 

the external survey being very different to the survey used in the spatial microsimulation method, 

and raise concerns about the accuracy of both surveys. Their overall conclusion is that it is possible 
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to produce accurate small area estimates using the P-MEDM approach, under the important 

provision that the analyst understands the limitations of the data and sampling method used in the 

survey. The method is likely to fail when producing any estimate of a small or rare population that 

is not adequately sampled in the survey; so like IPF, it still struggles with sparse populations. Based 

on their results and intuition, it can be concluded that when the method fails, it can fail dramatically.  

Another method that has come out in recent years is multilevel IPF. The IPF routine normally fits 

to person or household level benchmarks, but not to both person and household, at the same time. 

One way to overcome this limitation is to use a multilevel IPF (Fenton, 2016), which incorporates 

both person and household benchmarks using a multilevel statistical model. Fenton compares an 

IPF using a household only (single level) model; a multilevel model; and then a third refinement to 

IPF which uses a survey of personal incomes (SPI) for local areas to adjust the start weight for the 

IPF so that it reflects the relative probability of an adult with that income being selected from the 

distribution of incomes in the local area. 

The multilevel method uses adult and household benchmark data. For each IPF iteration, the adult 

benchmark totals are first applied. The arithmetic mean of these weights is then used as the starting 

weight to fit the household-level benchmarks. These weights are then applied to all adult household 

members, and the adult benchmarks are re-applied. This continues for the desired number of 

iterations, finally fitting and producing a set of household weights. 

The method that incorporates the SPI uses the SPI weights to adjust the start weights for the IPF, 

so that the start weights are based on the SPI survey weights, reflecting the relative probability of 

that household being selected in the sample. 

Fenton then uses the three methods to derive a number of indicators of multiple deprivation, 

including poverty rates. The multilevel model gives better estimates of incomes at the lower end of 

the income scale compared to the standard IPF method, whereas incorporating the SPI data to 

provide better start weights results in more accurate incomes at the top end of the income 

distribution. However, this also means that these top incomes are subject to considerable 

uncertainty, so care is needed in using this method. 

The final method identified in the literature is the FBS approach. This approach can either start 

with a random sample of people (with replacement) from a survey who are assigned to specific 

areas using some basic benchmarks like age, sex, etc.; or can start with a null population in each 

area, using the FBS approach to add households. The approach calculates two fitness values for 
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each household in the seed data (the survey being used to create the synthetic population), one for 

if adding the household into the synthetic population would reduce the error; and one for if 

removing it would reduce the error. Once the fitness values have been calculated, one household 

is randomly selected from those that have positive FBS values and this household is added or 

removed from the synthetic population. The fitness values are then recalculated; and the process 

continues. The process iterates until no households have positive values for either of the two fitness 

values (Ma & Srinivasan, 2015b). This process has also been implemented to create a synthetic 

population from a weighted population (Esteban Muñoz, 2016), calculated using the GREGWT 

procedure, a reweighting program which uses a generalised regression model (Tanton, Vidyattama, 

Nepal, & McNamara, 2011). 

Comparing results from this process applied to areas in Florida with results from an IPF method, 

the authors find that the FBS approach provides more accurate populations for more areas 

compared to the IPF approach and can derive more accurate results using fewer control tables. 

Further, increasing the number of control tables has little impact on the number of iterations 

required by the FBS approach. 

Finally, imputation methods are increasingly used in microsimulation models like tax/transfer 

models and health models (Schofield et al., 2017). In spatial microsimulation models, they have 

been used by Lymer et al. (2009), and more recently by (Namazi-Rad et al., 2017; Philips, Clarke, 

& Watling, 2017b). Imputation methods create a synthetic population, and then add data to this 

population from another dataset (usually a survey) using either a Monte Carlo approach (Philips et 

al., 2017b), a regression approach (Lymer et al., 2009) or a matching approach (Namazi-Rad et al., 

2017). The Monte Carlo approach starts using simulated annealing to develop a synthetic 

population, and then performs Monte Carlo sampling using conditional probabilities to add 

missing attributes. The regression approach uses a new dataset to calculate probabilities for a 

specific characteristic and then applies these probabilities to people in the synthetic population to 

calculate a probability that the person/household has that characteristic; and the matching 

approach brings data from another survey onto the synthetic population by finding similar people 

in another dataset and matching them to people in the synthetic population. 

2.2 New methods of validation 

In terms of validation, research has gone into two directions: developing new methods of 

validation; and calculating confidence intervals. 
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One new method of validation is the application of the Bland-Altman (BA) test, popular in health, 

to spatial microsimulation. This is a classic example where cross fertilisation of methods across 

disciplines has benefited spatial microsimulation. Because spatial microsimulation is a method that 

can be applied to a number of disciplines, there is a high degree of sharing different approaches 

across disciplines, which benefit everyone involved in spatial microsimulation modelling. 

The Bland-Altman test (Bland & Altman, 1986, 1999) is a graphical method to compare two 

measurements techniques. In this method the differences x-y (or alternatively the ratios x/y) 

between the two techniques are plotted against the means of the two techniques, (x+y)/2. The test 

evaluates whether the differences are statistically different from 0, or the ratios statistically different 

from 1. In an application to spatial microsimulation (Timmins & Edwards, 2016b), x is the model 

result for an area; and y is the benchmarked result that the model is trying to match. The plot gives 

an idea of area level variation as well as total variation. The authors identify a number of benefits 

using the BA test: 

 it provides information on area error as well as total error; 

 it identifies any bias and the direction of the bias; 

 it reveals outliers; 

 it can handle empty cell counts; 

 it shows the distribution of the error; 

 it is possible to compare plots across models with different scales; 

 it is easy to calculate and interpret. 

The BA plots show more information than the scatter plots normally used to show error in a 

model. Timmins & Edwards (2016) show that the scatter plots from a model can suggest excellent 

results, while the BA plots show up areas with some issues which the scatter plots had not 

identified. 

There has also been significant work on estimating measures of confidence for spatial 

microsimulation models over the last few years. Confidence intervals describe the uncertainty that 

exists in the model. They are important for policy makers as they can provide some idea of the 

range of values that might be expected in a real world policy change. In a previous paper, a number 

of experts highlighted estimates of confidence intervals as one of the needs for spatial 

microsimulation (Tanton, Williamson, & Harding, 2014). 
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Recent work on estimating measures of variability include a method which runs the model a 

number of times using the replicate weights from the base survey to derive an estimate of variability 

(Tanton, 2015), calculating Z scores using the results from the model and the benchmark data 

(Rahman, 2017b), and using the confidence intervals derived from a regression model used in the 

spatial microsimulation model  (Whitworth et al., 2017). 

The first method (Tanton, 2015) involves running the model on a number of sub-samples from 

the original survey. The Australian Bureau of Statistics (ABS) provides a set of replicate weights on 

their Confidentialised Unit Record Files (CURF) which is used in the spatial microsimulation 

model. These are calculated by the ABS based on a Jackknife replicate method using a delete one 

group Jackknife (Australian Bureau of Statistics, 2006). This means that on the CURF provided by 

the ABS, there are 60 different versions of the survey weights, each calculated using a different 

sub-sample of respondents. The respondents which were removed for the sub-sample have a 

weight of 0 for that particular replicate weight. The procedure runs the spatial microsimulation 

model on each of the 60 sub-samples, by removing those observations with a weight of 0. This 

provides some variability around the original run using the original survey weight, and this 

variability is then used to calculate confidence intervals. 

While this procedure is reasonably easy to implement by creating a loop to rerun the model across 

different sub-samples, the GREGWT model is estimated for 1,300 areas across Australia, and takes 

about nine hours to run. Using the replicate method, this would scale up to 61 times 9 hours (60 

replicate weights and one original survey weight), or 549 hours, or nearly 23 days. The GREGWT 

method also provides a weight for all 1,300 areas, so there would be 79,300 columns (1,300 areas 

times (60 replicate weights + 1 sample weight)) in the final dataset at a minimum. So the method 

is impractical. 

In testing the method for ten random areas in Australia (to reduce the time taken and the size of 

the final file), the author found that the confidence intervals were very small. This was because the 

method was measuring the model variability and Australian sample variability, not small area 

sample variability. The model variability is low because GREGWT is a deterministic model and 

gets very similar results given similar input data; and the sample variability is low because the sample 

was a large Australia wide sample designed by the ABS to be reliable. So in the end, the practical 

issues, and the final results (very low confidence intervals), suggested that the method was not 

feasible for the GREGWT model. 
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The second method (see Rahman, 2017) calculates Z scores based on the modelled estimates from 

a GREGWT model and the Census benchmark variables. The Z score is calculated as: 

 𝑍𝑖𝑗 =
𝑃𝑖𝑗
̂

−𝑃𝑖𝑗

√
𝑃𝑖𝑗(1−𝑃𝑖𝑗)

∑ 𝑛𝑖𝑗𝑗

 (1) 

Where Zij is the Z score for  the i-th small area and j-th benchmark category; Pij is the true estimate 

for the i-th area and j-th benchmark category from the benchmark table; �̂�𝑖𝑗  is the estimate from 

the model for area i and benchmark category j; and nij is the population of the i-th area and j-th 

benchmark category.  

An application to housing stress in Australia using different housing tenures showed that the Z 

statistics were close to 0 for all households and private renter households; but there was low 

precision for public renters. 

The final method was recently published by UK researchers using an IPF model (Whitworth et al., 

2017). This method uses the results from a multilevel model used for benchmark selection in an 

IPF setting. For spatial microsimulation models, benchmarks that are associated with the final 

output variable are important for accurate results. A regression model can be used to select the 

best benchmarks. Whitworth et al. (2017) suggest that this can be a multilevel model to incorporate 

area level differences, as well as person and household benchmarks. 

To estimate the confidence interval around the point estimate from the IPF, 10,000 values are 

drawn randomly from the known distribution of the residual between-area error term with mean 

of zero, standard deviation as estimated by the multilevel model, and normally distributed. The 

point estimate and the 10,000 separate between-area error terms are then expressed as log odds, 

and the error term was added to the point estimate to produce 10,000 plausible small area estimates. 

These estimates are then converted from predicted log odds into predicted probabilities and 95% 

confidence intervals are calculated. 

The authors find that the confidence intervals calculated using this method appear reasonable, 

suggesting that the method could be applied to any spatial microsimulation that uses benchmark 

tables to provide point estimates. 
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2.3 Summary 

This section has summarised developments in spatial microsimulation methods since 2014: 

incorporating errors into IPF (P-MEDM); using a multilevel approach to IPF; and applying fitness 

based sampling to IPF and generalised regression reweighting method. Most of these developments 

have been shown to provide better estimates than the basic method (either IPF or a generalised 

regression reweighting method). 

In terms of validation, Bland-Altman plots provide more information than scatter plots of 

modelled vs. actual results, and are a nice addition to the validation toolkit. A reliable, workable 

and fully tested method of calculating confidence intervals is still not quite there. The method 

developed by Whitworth et al. (2017) is the most promising, as it develops confidence intervals 

around the variable being estimated, rather than a variable in the benchmark tables (as the Z test 

does), however it is very new, and needs to be tested in other situations. It also relies on a multilevel 

model of the benchmarks, as described above, and presumably this must also be an accurate model. 

The Z test, suggested by Rahman (2017), calculates estimates around the benchmark values. This 

is of limited use as what is required are estimates of uncertainty around the estimated value, for 

which there are no benchmarks and therefore no Z statistic. The method suggested by Tanton 

(2015) using replicate weights proved unworkable for small area estimation due to the amount of 

time it takes to run, and the size of the final file. 

 

3 WHERE TO FOR SPATIAL MICROSIMULATION 

This section provides my own views, from the reading of the literature and the spatial 

microsimulation landscape, of where the future work in spatial microsimulation lies. These views 

were developed in discussion with others in the field and are not prioritised in any way. I have 

identified four areas which are purely my reflection on what I think will be important for spatial 

microsimulation in the future. Broadly, the four areas I have identified are: 

 further development of estimates of variability; 

 linked models; 

 making results from spatial microsimulation models more palatable to Government policy 

makers and the public; and 

 modelling using big data, for example, from smart transport cards or IoT devices. 
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3.1 Further development of estimates of variability 

While the last section identified a number of developments in estimating variability in spatial 

microsimulation models, none have provided a reliable, tested method, readily available to 

researchers using national microsimulation models, for example, tax/transfer models (Cohen, 

1991; Creedy, Kalb, & Kew, 2007). 

This area is essential for spatial microsimulation to gain acceptance from policy makers and other 

academics. Spatial microsimulation is becoming more common in policy analysis (Ballas & Clarke, 

2001; Hynes, Morrissey, O’Donoghue, & Clarke, 2009; Tanton, Vidyattama, McNamara, Vu, & 

Harding, 2009) but for spatial microsimulation models to be accepted for modelling policy in 

Government, there needs to be some estimate of the potential range of values (confidence 

intervals), rather than point estimates. These confidence intervals provide the policy makers with 

some idea of the high/low impact of the policy change. 

3.2 Linked Models 

Many problems seen in the world today require input from different disciplines, and have no one 

solution – there may be a range of solutions. These problems are sometimes called “wicked 

problems” (Head, 2008), and call for an integrated approach (Pearson, Norman, O’Brien, & 

Tanton, 2017). Examples of wicked problems are climate change, social injustice, entrenched 

disadvantage and healthcare. Wicked problems require social, economic and environmental 

approaches to be combined in order to provide information to policy makers and politicians on 

policies that may assist in resolving these problems, rather than offering isolated solutions to them. 

By providing a single numeric result, the current range of spatial microsimulation models encourage 

the user to say that this is what will happen when this policy is introduced – for example, poverty 

rates will go down in one area and up in another area. But these results typically look at changes in 

income with no behavioural change, no social change, and no environmental change. For example, 

what happens if because incomes are higher in an area due to a policy change, cars are used more 

often, and CO2 emissions increase? I would argue that the next range of spatial microsimulation 

models needs to start linking different models together, so that impacts across different areas can 

be estimated. 

This work has started, but is mainly linking economic models so far (Hérault, 2010; Rao, Tanton, 

& Vidyattama, 2015). Recent work by a number of groups in Australia has started looking at how 

a synthetic population can be used to integrate a number of different models (Tanton, Perez, & 
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Pettit, 2017; Tanton & Vidyattama, 2018), and there is significant progress that needs to be done 

in this area.  

3.3 Making results from spatial microsimulation models more palatable to Government 

policy makers and the public 

Tax/Transfer microsimulation models have been part of the Government policy landscape for a 

number of years and have been used extensively, for example in modelling budget policies (Berthier 

& Hudson, 2017; Stevenson, Ledda, Pineda, Smith, & Kluth, 2017) or for modelling in the 

Commonwealth’s Inter-Generational Reports in Australia (Commonwealth Treasury, 2007). 

However, while spatial microsimulation models have been used to model the spatial impacts of 

Government policy (Harding, Vu, Rodgers, Tanton, & Vidyattama, 2009; Tanton et al., 2009), they 

have not gained the same acceptance and use by public servants and politicians in Government as 

tax/transfer microsimulation models. An exception to this is Canada, where spatial 

microsimulation is used for demographic projections by the national statistical office (Statistics 

Canada, 2010b, 2011b). 

In Australia, we are now finding increasing acceptance of the results from spatial microsimulation 

models being used to inform policy, although confidentiality restrictions mean that many of these 

models cannot be published immediately, instead having to wait until a policy is finalised and 

implemented before publications can be produced. 

There may be many reasons for this reticence to use spatial microsimulation models to inform 

policy. One may be the issue of not being able to produce confidence intervals, already raised in 

this paper. For a recent model developed by NATSEM for an Australian Government department 

that is still subject to a Cabinet in Confidence clause, sensitivity analysis of the input parameters 

and variables was required, due to the fact that confidence intervals could not be produced. This 

sensitivity analysis applied a simple 10% increase and decrease to each parameter to identify the 

potential impact on the final results if the parameter changed. 

Another factor that may put public servants and politicians off spatial microsimulation models is 

their complexity. In Australia, the tax/transfer models used to model the impact of the budget are 

static, rather than behavioural or dynamic, because static models are easier to explain and 

understand, and rely on fewer assumptions. Once labour force decisions (for example) are brought 

into a model, complexity, and the number of assumptions increase, making confidence intervals 

larger. These behavioural microsimulation models are not used as much by policy advisers and 
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politicians, although the Productivity Commission with the Australian Treasury is developing a 

behavioural microsimulation model called CAPITA-B (Marshall, 2016). 

Another point that may put policy makers off spatial microsimulation models is an attitude among 

some academic modellers that the results from their models are the only thing that should be 

considered in the policy process, so the idea of evidence based policy with the results from the 

microsimulation model being the only evidence. This is not limited to spatial microsimulation 

modellers, nor to microsimulation modellers, and the view is not held by all modellers. It is also a 

generalisation made by the author, who has crossed from being a policy analyst to being a modeller 

in the University system. Modellers need to recognise that the political process is not just about 

evidence from one source, but evidence from a number of sources, budget restrictions, voter 

preferences, and political negotiation. At the end of the day, the results from our models feed into 

all this, but as the previous section on wicked problems has made clear, it is more complex than 

just using the results from one model. Mike Batty, a prominent spatial scientist in the UK who has 

been involved in modelling for cities since the late 60’s, puts this succinctly (and proves that the 

previous comment is a generalisation) when he writes: 

“The purpose of our science is to inform the dialogue, not to generate “answers” or “solutions” 

per se, notwithstanding the fact that we represent the argument in these terms.” (Batty, 2013, p. 

360). 

As modellers, we need to remember that we are providing input into a much larger, and more 

complex, political process. We need to accept that our models will inform the solutions to wicked 

problems, and we need to work closely with policy makers to inform their policies, without claiming 

that we are solving them. 

3.4 Modelling using big data 

Big data is an area that is currently ripe for spatial microsimulation models. We are now seeing a 

proliferation of big data from smart cards used in transport systems, smart electricity meters, and 

other IoT devices in many areas. Smart cities, where free parking spaces show up in an app, and 

CO2 levels are monitored in real time, are now a reality.  

Given much of this data is spatial, there are obvious opportunities to map the data, and visualise 

the patterns within a city (Charles-Edwards & Bell, 2013; Zhong, Manley, Müller Arisona, Batty, & 

Schmitt, 2015). Recent work in the UK has shown how electricity consumption from smart meters 



INTERNATIONAL JOURNAL OF MICROSIMULATION (2018) 11(1) 143-161  156 

TANTON    Spatial Microsimulation: Developments and Potential Future Directions 

can support the collection of population statistics (Anderson, et al., 2017; Newing, Anderson, 

Bahaj, & James, 2016). 

Going beyond simple mapping of this data, one area of potential growth in the next few years is 

looking at how these huge amounts of data can feed into spatial microsimulation models to increase 

their accuracy, impute other information, or assist projections of policy. An example that may be 

considered is using IoT devices to collect information on CO2 emission in a street, and then using 

weather projections of wind force and direction to project spatial levels of CO2 in particular areas 

at a particular time. The projections of wind force and directions could then be varied to provide 

a number of different scenarios, based on different seasons, to feed into policy decisions about 

road accessibility at certain times of the day.  

 

4 CONCLUSIONS  

This paper has provided a summary of the latest developments in spatial microsimulation, as well 

as providing some suggestions on where the next steps may be. One of the exciting aspects of 

spatial microsimulation is that it is used across many different disciplines, which means that 

development can come from various directions. 

In terms of method development, these continue, although most developments are refinements of 

current approaches. The process of estimating confidence intervals is still an area that needs some 

testing. While recent developments have been made, some of these are unmanageable in terms of 

the time taken and the size of the final file (Tanton, 2015), and confidence intervals using the Z 

statistic (Rahman, 2017b) can only be applied to an indicator where reliable small area data is 

currently available. The method suggested by (Whitworth et al., 2017) is very new, and requires 

further testing, but has some potential. 

In terms of areas of development and potential new work, I have identified four areas, being further 

work on bedding down a method for estimating confidence intervals; linking models from different 

disciplines to tackle wicked problems; making results from spatial microsimulation models more 

mainstream in terms of public policy; and using big data from smart cities in spatial microsimulation 

models to either increase accuracy, or incorporate into simulations. All of these are areas have 

potential for development over the next few years, but this list is certainly not exhaustive. Given 

the inter-disciplinary nature of spatial microsimulation, we can expect to see many exciting 

developments over the next few years, as there has been over the last three years.  
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