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ABSTRACT: The Microsimulation Lung Cancer (MILC) model was developed to simulate indi-
vidual trajectories and predict outcomes of lung cancer for populations. The model describes the
natural history of lung cancer from a disease-free state to death. Predictions of individual trajectories
depend on a set of covariates including age, sex, and smoking behaviors. The module presented here
is designed as part of a comprehensive decision-making toolkit for evaluating lung cancer prevention,
screening and treatment policies. The MILC package implements the model in the open-source sta-
tistical software R. This paper introduces the main components, simulation algorithm, and specifics
of theMILCmodel, validates it by reproducing observed lung cancer incidence trends in the US pop-
ulation, and uses it to make plausible predictions for 50-year-old men and women with a range of
smoking histories.
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1 INTRODUCTION

Micro-SimulationModels (MSMs) are predictive models designed to describe complex processes and
simulate unit level data (Orcutt, 1957). Predicted trends about the quantities of interest, resulting from
aggregation of a large number of microsimulations, are intended to guide policy decisions. Inmedical
decisionmakingMSMs usually describe the natural history of a disease, often in conjunctionwith the
effect of some intervention, such as screening, treatment, etc. (Kopec, Edwards, Manuel, & Rutter,
2012). To this end they employ mathematical equations with stochastic assumptions to describe both
observed and latent characteristics of the underlying process (Rutter, Zaslavsky, & Feuer, 2011).

MSMs are useful because they provide a handy way to simulate intricate phenomena involving dy-
namic systems for which observed data are either hard or even unethical to collect (for instance, ex-
posing the subjects to unnecessary risks) or not available (for example, latent characteristics). They
also constitute a practical tool for combining information from various sources, including observa-
tional studies, clinical trials, expert opinions, etc., and simulating large pseudo-samples. Due to the
great flexibility they provide to researchers, MSMs have proven so far one of the best ways to model
the progression of chronic diseases (Oderkirk, Sassi, & Cecchini, 2012). The focus on the individual
rather than the average patient can also prove them a very useful tool for assisting improvement of
individualized patient care. Therefore microsimulation has risen to prominence as a promising tool
for making projections about the impact of interventions (such as screening) when applied to pop-
ulation cohorts, and thus informing health policies and improving medical decision making (Kopec
et al., 2012). For example MSMs are often used in Comparative Effectiveness Research (CER) stud-
ies, aimed at evaluating public health policies and their effect on health status of target populations
Zucchelli, Jones, & N., 2012.

The development of anMSM is a challenging undertaking. Due to their complexity (combination of
several stochastic anddeterministicmodels, a usually large number of parameters, description of latent
characteristics, etc.), model calibration requires advanced statistical techniques, and a huge number,
usually of an order of magnitude of 12 or more, of microsimulations. The same holds for an extensive
validation of the model, let alone a sensitivity analysis, hence it is self evident that the development of
an MSM is a computationally highly intensive problem that necessitates special resources for imple-
menting high performance computing techniques. Furthermore, the complexity of an MSM along
with the fact that it often tries to describe latent phenomena lead to identifiability problems. The
degree of accuracy and the validity of an MSM highly depend on the available information and data
for building and calibrating the model. In addition, MSMs are subject to several sources of uncer-
tainty, the combination and expression of which on the final outcomes is a problem not satisfactorily
addressed yet (Li &O’Donoghue, 2013; Rutter et al., 2011).

SeveralMSMshavebeendeveloped inorder topredict lung cancer related outcomes. Someof themost
comprehensive ones are part of the research conducted by the Cancer Intervention and Surveillance
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Modeling Network (CISNET) of the National Cancer Institute (NCI).1 Examples of other MSMs
for lung cancer can also be found in the literature (Bongers et al., 2016, 2013; Flanagan et al., 2015;
Goldwasser, 2009). All these models, as part of interdisciplinary work, have been proven extremely
useful, especially for evaluating intervention strategies and informing public health decisions, with
numerous applications. Depending on the specific purpose to fulfill, each of these MSMs focuses on
particular aspects of the natural history of lung cancer, exhibiting large variation from the structure
(methods used to describe each component, etc.) and required input data, to the predicted outcomes.

Despite the evident usefulness, and unquestionable value and contribution in the field of lung cancer
research, MSMs for lung cancer suffer from some limitations. Until today, at least to our knowledge,
there is no publicly available source code for running these models. In addition, the high level of
complexity, and the lack, in many cases, of sufficient details about their structure, render these mod-
els “black boxes’’, hard to understand and evaluate, and impossible to reproduce (Kopec et al., 2010;
Rutter et al., 2011). The implementation, and reporting practices forMSMs require a lot of discussion,
and some standardization, in order to facilitate evaluation and enhance comprehensiveness.

TheMicrosimulationLungCancer (MILC)model (Chrysanthopoulou, 2013), is a new, dynamic, con-
tinuous time microsimulation model that simulates individual trajectories focusing on lung-cancer
related outcomes. In its current version, the model comprises a module describing the natural history
of lung cancer in the absence of any screening or treatment components, and incorporates several best
current practices formodeling lung cancer states. Themodel simulates the course of lung cancer from
the disease-free state to the local, regional, and distant disease states and eventually to death either
from lung cancer or some other cause. Prediction of individual trajectories involves incorporation of
unit-level baseline information about three important factors, namely age, sex, and smoking, includ-
ing current smoking status, start and quit smoking ages, and average number of cigarettes smoked per
day when relevant.

One of the main objectives of creatingMILCwas to use the model as a tool for studying the statistical
properties of, and suggesting appropriate statisticalmethods for the development ofMSMswith anal-
ogous characteristics. Furthermore we wanted to create a streamlined, yet validMSM for lung cancer,
and make it publicly available to potential end users in the field of lung cancer research. The MILC
package (Chrysanthopoulou, 2014) includes the required source code and data for implementing this
model in the open-source statistical software R, and is available on the Comprehensive R Archive
Network (CRAN) repository.

This article introduces the MILC model and describes its main components, simulation algorithm,
and specifications. We also present two examples of how theMILCmodel can be used in practice. In
the first example we validate themodel against observed lung cancer incidence rates in the US popula-
tion, while in the second we use theMILCmodel to predict individual risks for smokers based on sex
and smoking intensity. Finally we discuss the main differences between our model and other MSMs
used in lung cancer research, and outline future work to develop theMILCmodel into a comprehen-
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sive tool for assisting decision making for lung cancer.

2 METHODS

2.1 Model components

The MILC model defines five distinct states in the natural history of lung cancer. Starting from the
disease-free state (S0) it is possible for an individual to have transition to the local (S1), regional (S2),
and distant (S3) disease state, and eventually to the absorbing state of death (S4) either from lung can-
cer or from some other cause. States S1-S3 are sometimes called tunnel states because of their special
arrangement, namely they can only be visited in this particular fixed order (Sonnenberg&Beck, 1993).
TheMarkov state diagram in Figure 1 depicts the five distinctMILCmodel states, and the underlying
transition rules.
Figure 1: Markov State diagram of the MILCmodel.

The onset of the firstmalignant cell signifies the beginning of the local disease state (S1). The tumor in
that state is limited to the place where it started, with no sign of spread elsewhere in the body. The first
malignant cell can proliferate up to the point of nearby lymph nodes, tissues, or organs involvement
thus transitioning to the regional disease state (S2). The tumor may further progress to the distant
state (S3), namely metastasize to distant parts of the body, and eventually cause death (S4), unless
death from some other cause precedes. Within the three tunnel states tumor can range from Stage 0
to Stage IV, depending on the size and spread (National Cancer Institute, 2017a).

The MILC model makes some important assumptions. First of all it assumes that the transition to
subsequent states depends only on the present state (Markov property). Furthermore the disease pro-
gression is irreversible, namely once the first malignant cell occurs lung cancer will either remain to
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the local or transition to subsequent states, depending on the total time of the follow-up period and
a number of risk factors. Finally a death can be attributed to lung cancer if and only if it occurs after
transition to the distant state.

2.1.1 Onset of the first malignant cell

Wemodel the onset of the first malignant cell using the exact solutions for the expression of the haz-
ard rates and the survival probabilities of the biological two-stage clonal expansion (TSCE) model
suggested by Moolgavkar and Luebeck (1990). According to this model the hazard function for the
development of the first malignant cell (Heidenreich, Luebeck, &Moolgavkar, 1997) can be expressed
as:

h(t) =
νµX(e(γ+2B)t − 1)

γ +B(e(γ+2B)t + 1)
(1)

with γ = α − β − µ, and B = 1
2
(−γ +

√
γ2 + 4αµ). In Equation 1 X is the total number

of normal cells, ν is the normal cell initiation rate, and α, β, µ are the division, apoptosis (death or
differentiation), and malignant conversion rates of initiated cells respectively.

Studies (Hazelton, Clements, &Moolgavkar, 2005; Hazelton, Luebeck, Heidenreich, &Moolgavkar,
2001) have shown that power laws are good approximations to the effect of smoking on the onset of
the first malignant cell. If q(t) denotes the smoking intensity at age t, expressed as average number of
cigarettes smoked per day, then:

αs = αns · [1 + α1 · q(t)a2 ] (2)

and
γs = γns · [1 + α1 · q(t)a2 ] (3)

where αns and γns are the respective coefficients for non-smokers. To account for sex and smoking
history differences, we assume different hazards (as functions of age t) for each combination of sex
(male/female), and smoking status (never/former/current smoker) categories.

For each individual the time period from birth (t = 0) to the onset of the first malignant cell can
be split into intervals within which the hazard rate is constant and depends on the person’s smoking
status. The hazard for never smokers is constant throughout their entire life and of course indepen-
dent of smoking. Smokers have two different hazards, one before (the same with non-smokers), and
one after (depending on the smoking intensity) they start smoking. In its current version MILC also
assumes that former smokers had only two changes in their smoking behavior, namely one when they
started and one when they quit smoking. However the model is flexible and can accommodate multi-
ple changes of smoking behavior in a person’s lifetime.2
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2.1.2 Tumor growth

The Gompertz distribution is more flexible than the exponential, and therefore provides a better ap-
proximation of tumor growth for most cancer types (Detterbeck & Gibson, 2008). The Gompertz
distributionmodels proliferation of tumor cells as a modified exponential process in which successive
doubling times occur at increasingly longer time intervals (Laird, 1964). This enables us to capture the
reality of shorter pre-clinical periods with longer survival after diagnosis.

We define V (t) to be the tumor volume when a person reaches age t (in years). The MILC model
assumes a Gompertzian tumor growth (Laird, 1964), according which:

V (t)

V0
= e

s
m
(1−e−mt) (4)

where V0 represents the initial tumor volume (namely the volume of the first malignant cell), whilem
is the scale, and s is the shape parameter of the Gompertz probability density function.

We further assume a spherical tumor growth (Gallaher, Babu, Plevritis, &Anderson, 2014), thusmak-
ing the tumor size a function of its diameter d(t) at age t, namely:

V (t) =
π

6
[d(t)]3 (5)

In the literature (Detterbeck & Gibson, 2008; Geddes, 1979; McMahon, 2005) we find that the min-
imum tumor diameter (one cancerous cell) is d0 = 0.01µm, and the maximum possible diameter
(tumor that causes death) is dmax = 13cm. To simplify model parameterization we assume the same
Gompertz distribution for all tumors irrespective of their histological type and stage.

2.1.3 Disease progression

Disease progression of an existing lung cancer can occur via nodal involvement and distant metastases
(McMahon, 2005). Current MSMs for lung cancer (Goldwasser, 2009; McMahon, 2005) in their dis-
ease progression parts adopt methods developed to describe the progress of breast cancer (Garg, Rao,
& Redmond, 1970; Koscielny, Tubiana, & Valleron, 1985; Plevritis, Salzman, Sigal, & Glynn, 2007;
Thames, Buchholz, & Smith, 1999). Given a Gompertzian tumor growth, the log-normal distribu-
tion can adequately describe the distribution of tumor volumes at specific time points, starting from
the local state, that is the onset of the first malignant cell (Koscielny et al., 1984, 1985; Spratt & Spratt,
1964; Steel, 1977).

We define three different log-normal distributions to simulate the tumor volume at the transition to
regional (Vreg), and distant (Vdist) disease states, as well as the tumor at diagnosis (Vdiag). Given the
simulated tumor volume, and growth rate, and assuming a spherical growth, the model calculates the
age at which the tumor has reached a specific size, and hence the age at the transition to each of the
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respective three MILC states.

2.1.4 Survival

Because smoking is an important risk factor for dyingnotonly from lung cancer (National Cancer Institute,
2017b), we follow a competing risks approach to simulate mortality, distinguishing between death
from lung cancer or other causes. We estimate theprobability of death from lung cancer in thepresence
of other causes of death, using the Cumulative Incidence Function (CIF) non-parametric technique
(Klein&Moeschberger, 2003). We derive estimates using information fromboth theNationalHealth
Interview Survey (NHIS, 2006) and Surveillance, Epidemiology and End Results (SEER, 2006) data.

We employ the inverse transform approach to simulate both age and cause of death (lung cancer or
other) based on CIF estimates. The MILC simulations depend on the strong assumption that the
observed death patterns and smoking behaviors do not change dramatically over time, hence they are
also relevant to the prediction periodwe are interested in. Furthermore, given the data used, themodel
currently represents survival patterns observed in the US population. Depending on the available
information, the MILCmodel can be also calibrated and used to simulate other (sub-)populations.

2.2 Model specifics

2.2.1 Structure and parameterization

Table 1 summarizes the parameterization of the MILC model. Figure 2 depicts how the model func-
tions, namely the required input and the anticipated output for each simulated individual trajectory.
In particular, to predict one trajectory, we “feed” the model with three sets of input: (i) Baseline char-
acteristics X (age, sex, smoking habits) of the individual. Smoking includes status (never, former, or
current smoker), as well as start and quit smoking ages, and smoking intensity (average number of
cigarettes smoked per day), where relevant. (ii) Values for the model parameters θ. These values can
be either ad-hoc estimates or the result of some calibration procedure. (iii) Cumulative incidence func-
tion estimates Ŝ for lung cancer and other cause survival.

PossibleMILCoutputs (predictions) can be classified into three broad categories, namely those regard-
ing the disease progression (Õprog), diagnosis (Õdiagn), and death (Õdeath).Disease progression output
(Õprog = {Tmal, Treg, Tdist}), comprises prediction of the ages at the beginning of the local, regional,
anddistant tumor states respectively. In theMILCmodeldiagnosis signifies the timewhen lung cancer
is confirmed and assessed for its size and stage. Diagnosis output (Õdiagn = {Tdiagn, ddiagn, stage})
includes predicted age, tumor size, and tumor stage at diagnosis. Finally, death output (Õdeath =

{Tdeath, cause}) has information about the age and cause of death, if the model predicts that the in-
dividual dies before the end of the follow-up period. Otherwise it provides the age at the end of the
prediction period, if the person is still alive by then.
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Table 1: MILCmodel parameterization.

Model components

Initiation of the local stage: Two-Stage Clonal Expansion (TSCE) carcinogenesis model

Risk for the onset of the first malignant cell: h(t) = νµX[exp (γ+2B)·t−1]
γ+B[exp (γ+2B)·t+1]

where
γ = α− β − µ and B = 1

2
(−γ +

√
γ2 + 4αµ)

X: total number of normal stem cells
ν: normal cell initiation rate
α: division rate of initiated cells
β: apoptosis rate of initiated cells
µ: malignant conversion rate of initiated cells

Effect of smoking on α and γ parameters:
αs = αns · [1 + α1 · q(t)α2 ] and γs = γns · [1 + α1 · q(t)α2 ]

where
q(t): average number of cigarettes smoked per day at age t
(αs, γs) and (αns, γns): parameters for smokers and non-smokers respectively.

Tumor growth: Gompertz function

V (t)
V0

= exp [ s
m
(1− exp (mt))]

where
V(t): tumor volume at age t
V0: minimum tumor volume (one malignant cell)

Assuming spherical tumor growth:
V(t)=π

6
d(t)3

d(t): diameter at age t
d0=0.01mm, diameter of one malignant cell
dmax=13cm, maximum tumor diameter

Disease progression: Transition to regional and distant stages and tumor diagnosis

Tumor volume at :
− the beginning of the regional stage: Vreg ∼ log-normal(µreg, sdreg)
− the beginning of the distant stage: Vdist ∼ log-normal(µdist, sddist)
− diagnosis: Vdiagn ∼ log-normal(µdiagn, sddiagn)

where
V0 < Vreg < Vdist < Vmax
V0 < Vdiagn < Vmax
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Figure 2: Structure of the MILCmodel.

2.2.2 Calibration

Specifying the parameter values of anMSMrequires extensive calibrationwith results heavily depend-
ing on the quality of the available data. Themicrodata used and the calibration targets set are key com-
ponents of the calibration procedure.Microdata is essentially individual-level information for a sam-
ple of subjects representative of the target population in the study, and is used as input to the model
for simulating individual trajectories. Calibration targets are quantities of interest (usually summary
statistics from the target population) that the MSM should accurately predict.

The high level of complexity usually renders impossible the determination of closed-form expressions
of the outcomes as functions of the model parameters. This along with the fact that anMSM usually
involves description of latent characteristics, as is the casewith theMILCmodel, dictates the use of cal-
ibration procedures for the specification of sets of plausible values for themodel parameters. Detailed
calibration of anMSM is a computationally intensive and time consuming process. For the examples
presented in this paper we have used the MILC model after calibrating four parameters, and setting
ad-hoc estimates or fixed values from the literature for the others as indicated in Table 2.

The microdata used for this calibration, included individual-level information randomly extracted
from the 1980 US population. The four parameters that we chose to calibrate represent several as-
pects in the natural history of lung cancer; one is related to the tumor growth (m), and the others to
the disease progression component of the model (µreg, µdist, and µdiagn). We used fixed values for all
the otherMILCparameters, based on literature review about the natural history of lung cancer (Table
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2). For parameters related to the onset of the first malignant cell we retrieved values fromHazelton et
al. (2005), while values for the tumor growth component were found in Koscielny et al. (1985).

We implemented the Bayesian calibration method, suggested by Rutter, Miglioretti, and Savarino
(2009), to calibrate the MILC model on lung-cancer incidence trends observed in the 2006 US pop-
ulation of males. The method involves a large number of Gibbs sampler iterations with embedded
approximate Metropolis-Hastings steps for drawing values from the joint posterior distribution, as-
suming that lung cancer incidence rates approximately follow a Poisson distribution. The result from
this calibrationmethod is a set of random draws from the approximate joint posterior h(θ |Y ) of the
parameter vector θ. Table 2 presents medians and interquartile ranges for the four calibrated MILC
parameters (m, µreg, µdist, and µdiagn).

Details on the Bayesian calibration procedure are provided in another paper in preparation (Chrysan-
thopoulou, 2017). This paper discusses results from a comprehensive comparative analysis of two of
the most broadly used calibrationmethods forMSMs, the aforementioned Bayesianmethod, and an-
other Empirical techniquewhich employs theLatinHypercube Sampling design for an efficient search
of the multidimensional parameter space.

2.2.3 Validation

We validated the model predictions against lung cancer incidence trends observed in the US popula-
tion. For this purposewe simulated individual-level characteristics (age, sex and smoking) for apseudo-
sample of size N=10,000 people, representative of the 1980 US population, combining information
from the 1980 US census, and the 1980 Statistical Abstract of the US. We used the calibrated MILC
model to simulate individual trajectories for people in the pseudo-sample, and predicted lung cancer
incidence rates 26 years ahead. We compared the predicted rates (aggregated results) with age-group
specific ones reported in the SEER 2002-2006 database (Figure 3). The MILC model can also be cal-
ibrated to other data, so as to simulate various (sub-)populations, and/or even reproduce other lung
cancer related outcomes, such as mortality, age and tumor stage at diagnosis.

2.2.4 Functionality

Themost typical use, and essentially the primary reasonwhich has driven the development and imple-
mentation ofMSMs inmedical decisionmaking, is the application of this model to a cohort of people
for which individual-level information at baseline is available. Given this information, the model tries
to accurately predict individual disease trajectories, and estimate outcomes of interest by aggregating
relevant quantities from the predicted trajectories (Meza et al., 2014; Rutter & Savarino, 2010; Wolf-
son, 2011). Those estimates can result in after a single ormultiple runs of themodel on the same cohort.
Multiple repetitions are preferable because they can provide a better sense of the inherent uncertainty,
and reveal interesting correlation structures of the underlying system components.
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Table 2: Values and calculations for the fixed and calibrated parameters of the MILCmodel.

Parameter Sex Description
Male Female

Onset of the first malignant cell a

All
X 10e+7 Total number of normal stem cells

Non-Smokers
vns 7.16e-8 1.07e-7 Normal cell initiation rate
αns 7.7 15.82 Division rate of initiated cells
γns 0.09 0.071
µns vns Malignant conversion rate of initiated cells
βns αns − µns − γns Apoptosis rate of initiated cells

Smokers
νs νns 0.98×νns Normal cell initiation rate
α1 0.6 0.5
α2 0.22 0.32
αs αns×(1+α1 × [q(t)]α2) Power law relationships between γ, α and
γs γns×(1+α1 × [q(t)]α2) smoking intensity q(t) at age t
µs µns Malignant conversion rate of initiated cells
βs αs − µs − γs Apoptosis rate of initiated cells

Tumor growth b

d0 0.01mm Minimum tumor diameter (one tumor cell)
dmax 130mm Maximum tumor diameter
m 3.4e-4 Scale parameter of the Gompertz distribution

[3.2e-4, 3.6e-4]
s 31×m Shape parameter of the Gompertz distribution

Disease progression

µreg = sdreg 2.16 [1.37, 3.06] Mean and sd of the logNormal distribution for
µdist = sddist 5.62 [3.59, 8.02] the tumor volume at the beginning of the regional,
µdiagn = sddiagn 2.65 [1.52, 3.94] distant stage, and diagnosis

Notes: Values for the calibrated MILC parameters are presented as Q2 [Q1, Q3], where Q2 is the median, and Q1, Q3 are the 1st and 3rd quartiles
respectively. The values and distributions of MILC parameters are the same for males and females, unless otherwise indicated.
Sources:
a Ad hoc values fromHazelton et al. (2005).
b Ad hoc values from Koscielny et al. (1985).
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In this paper we also suggest another potential use of a well calibrated MSM. Given certain baseline
characteristics, the model can be run multiple times on the same individual so as to produce a set of
possible patient-specific trajectories. Summarizing information from these simulated trajectories can
result in useful estimates about disease-related outcomes, and inform clinical decisions for the par-
ticular person. In another paper in preparation (Chrysanthopoulou, 2018) we emphasize the need for
MSMs that can accurately predict individual-level outcomes, and helpwith improving individualized-
patient care. In that paper we also discuss statistical methods for assessing the predictive accuracy of
continuous time, dynamic MSMs, using MILC as a tool for the implementation and comprehensive
comparison of those techniques.

We exemplify the functionality of our model by presenting results from two applications. The first
example is related tomodel validation, namelyMILC is used to predict lung cancer incidence rates for
the US population, as described in Section 2.2.3. Comparison of these predictions with observed lung
cancer incidence rates from the SEER database constitutes an external validation of theMILCmodel
in the sense that the microdata for this procedure were different from the sample used for calibrating
the model.

Furthermore we used MILC to estimate individual risk of developing lung cancer under different
scenarios. To accomplish this we ran the model multiple times (n=1000) on the same individual
(fixed baseline characteristics), and simulated lifetime trajectories. We considered scenarios for smok-
ers (males and females), who were 50 years old at baseline, and started smoking around the age of
20 years. We varied smoking intensity to an average of 10, 30, or 50 cigarettes per day, in order to as-
sess the effect of this important risk factor on the predicted lung cancer incidence. We summarized
predicted event (lung cancer diagnosis) or censoring (if the person is not diagnosed with lung cancer
before death) times with Kaplan-Meier curves.

2.2.5 Implementation in R

One of the main objectives of this research was to create an MSM for lung cancer fully developed in
open source software, thus enhancing the transparency of the model. To this end Chrysanthopoulou
(2014) built MILC, a new R-package that implements the MILC model in R, and is available on the
CRAN repository. This package can be used to simulate individual trajectories, and predict lung-
cancer related outcomes following the structure and assumptions of the MILCmodel.

Table A.1 outlines the algorithm for simulating one individual trajectory (one microsimulation). The
computational cost for running in parallel 1,000,000 independent microsimulations (individual tra-
jectories) was approximately 7.5 CPU-hours; with simulations distributed across 16 nodes (8-core Intel
Xeon E5540 at 2.53 GHz with 24GB of memory) the total required time is 3.5 minutes.
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3 RESULTS

Figure 3 shows the results from the validation of the MILC model. The box plots summarize the
distributions of the predicted lung cancer incidence rates by age-group for male and female current
smokers. All observed rates fall within the resulting range of model-predicted values, thus suggesting
an overall good performance of the Bayesian calibrated MILC model with respect to predicting lung
cancer incidence trends in the particular US sub-population.

Figure 3: Predicted versus observed lung cancer incidence rates by age-group and sex.

We also used the calibratedMILCmodel to simulate lifetime trajectories for individuals given certain
baseline characteristics (Section 2.2.4). We summarized predictions about the development of lung
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cancer with Kaplan-Meier curves. Figure 4, Figure 5, and Figure 6 compare predicted survival curves
by sex and smoking intensity. According to model’s predictions, males have a greater risk of lung can-
cer than females. In addition, as expected, the risk of developing lung cancer increases with the average
number of cigarettes smoked per day. Both these findings are consistent with current lung cancer re-
search (Doll, 1998;American Cancer Society, 2017; IARC, 1986), thus indicating that theMILCmodel
can provide plausible predictions.

Figure 4: Predicted individual risk of lung cancer for people, 50 years old, smoking on average 10 cigarettes per day, by sex.

4 DISCUSSION

This paper introduces the MILC microsimulation model that describes the natural history of lung
cancer, and predicts lung cancer related outcomes. The model simulates individual trajectories given
age, sex and smoking, including smoking status (never, former, or current smoker), intensity (average
number of cigarettes smokedper day), aswell as start andquit smoking ageswhen relevant. Each simu-
lated trajectory includes information regarding the age of transition to any of four distinct states in the
course of lung cancer (that is, local, regional, distant, death), the age, tumor size and stage at diagnosis,
and the cause of death (lung cancer, or other) where relevant. The MILC package (Chrysanthopoulou,
2014) implements the MILCmodel in R, and is available on the CRAN repository.

We outlined the model structure and parameterization, and described the simulation algorithm for
predicting individual trajectories. We calibrated and validated themodel against lung-cancer incidence

Chrysanthopoulou MILC: A Microsimulation Model of the Natural History of Lung Cancer



International Journal ofMicrosimulation (2017) 10(3) 5-26 19

Figure 5: Predicted individual risk of lung cancer for people, 50 years old, smoking on average 30 cigarettes per day, by sex.

Figure 6: Predicted individual risk of lung cancer for people, 50 years old, smoking on average 50 cigarettes per day, by sex.
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rates observed in theUS population. We further used the calibratedMILCmodel to predict lung can-
cer incidence risk for different subpopulations of smokers classified by sex and smoking intensity. The
results showed an overall good fit of theMILCmodel to observed data, as well as plausible predictions
with respect to the effects of sex and smoking on lung cancer incidence.

The CISNET lung cancer group has developed some of the most comprehensive, and broadly used
microsimulation models, among the several predictive models for lung cancer in the literature. This
group has currently six predictive models for lung cancer, among which four are microsimulation
models. The SimSmoke model (Levy, Bauer, & Lee, 2006; Levy & Friend, 2002) and the Yale Uni-
versity model (Holford, Zhang, &Mckay, 1994; Holford, Zhang, Zheng, &McKay, 1996) are not mi-
crosimulation models, as they adopt the cohort-simulation representation of the underlying Markov
process, rather than aMonte Carlo simulation.

Among the other four CISNETMSMs for lung cancer, the RICE-MDAmodel by Foy, Deng, Spitz,
Gorlova, andKimmel (2012) predicts lung-cancermortality without any detail on disease progression,
such as tumor growth, age, tumor type and stage at diagnosis, etc. The FHCRCmodel by Hazelton,
Jeon, Meza, and Moolgavkar (2012) only comprises a natural history component, as the module we
suggest in this article. However, unlike the MILC, the FHCRCmodel focuses on the effect of smok-
ing on lung-cancer mortality without providing an explicit definition of the distinct disease states, or
information on tumor diagnosis. TheMISCAN-lungmodel byHabbema, vanOortmarssen, Lubbe,
and van derMaas (1985), on the other hand, does notmonitor tumor size in the simulation procedure.
Finally, the key difference between theMILC and the Lung Cancer PolicyModel (LCPM) byMcMa-
hon et al. (2012) lies in the way they simulate the initiation of the local stage. The LCPM employs a
logistic regression approach to estimate the risk for the onset of the first malignant cell, rather than the
TSCE approach followed in the MILCmodel.

To our knowledge, no other microsimulation model for lung cancer is readily available to potential
end users. The motivation for creating the MILC model, and a major strength, is that it has been
fully developed in R. The MILC package makes the source code publicly available thus enhancing
the transparency of the model. This is the first MSM for lung cancer built in open source statistical
software.

The implementation of MILC in an open source statistical software also facilitates the research on
the statistical properties of continuous timeMSMs by providing a handy tool for developing, testing
and comparing statistical methods applied to this type of models. Two papers in preparation, study
statistical methods for calibration, and evaluation of the predictive accuracy of dynamic, continuous
timeMSMs. These working papers use theMILCmodel as a tool for assessing the performance of the
investigated techniques.

In addition, potential end users, especially people in health services, policy, and practice, could use
MILC in its current version, or easily modified (calibration) to represent different (sub-)populations
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depending on the available data and research questions. It can also serve as a good starting point for
building a more comprehensive MSM for lung cancer incorporating further assumptions, adding ex-
tra components (involving interventions), and predicting more detailed information about the devel-
opment and progression of lung tumors in a person’s lifetime.

Despite its usefulness, theMILCmodel has some limitations. In its current version it onlymodels the
natural history of lung cancer in the absence of any screening or treatment components. In addition,
this is a streamlinedMSM that, when simulating individual lung-cancer trajectories, it only takes into
account age, sex, smoking. It is well known that there are several other potential risk factors for lung
cancer such as exposure to environmental hazards, second-hand smoking, family history, etc. These
are important risk factors that, in certain cases, should be considered for a more accurate and realistic
representation of the natural history of lung cancer.

We plan to expand theMILCmodel so as to describe the natural history of lung cancer inmore detail,
including screening and treatment components, and incorporating further information from lung
cancer research (more complex smoking patterns, additional risk factors, etc.). We envisage to develop
MILC into a comprehensive microsimulation model that can constitute an integral part of decision
models aimed to inform health policy and clinical practice related to lung cancer.
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APPENDIX

A.1 SIMULATION ALGORITHM

Table A.1 presents the steps followed for the simulation of an individual trajectory using the natural
history module of the MILCmodel.

Table A.1: Simulation algorithm to predict the lung cancer trajectory of an individual using the MILCmodel.

Steps

1. “Feed” the model with the individual baseline characteristics
X=(age, sex, smoking history a).

2. Simulate age of death (Td_other) from a cause other than lung cancer
given age, sex, and smoking status.

3. Simulate age at the onset of the first malignant cell (Tmal), given
sex, and smoking history.

4. Simulate ages at the beginning of regional (Treg), and distant
stage (Tdist) given Tmal, and tumor growth rate.

5. Simulate age (Tdiagn) at diagnosis given Tmal, and tumor
diameter (ddiagn).

6. Find tumor stage at diagnosis comparing Tdiagn with Treg and Tdist.

7. Simulate age of death from lung cancer (Td_lung) given the simulated
individual’s characteristics at diagnosis (Tdiagn, and tumor stage).

8. Predict one trajectory, that is, combine the simulated characteristics to
"tell" a story for the specific individual with covariatesX.

a Smoking history comprises: smoking status (never, former or current smoker), smoking intensity (average number of cigarettes smoked per day), as
well as start and quit smoking ages where relevant.

A.2 INDIVIDUAL TRAJECTORIES

Figure A.1 presents four possible individual trajectories predicted by the MILC model. According to
these trajectories, only Individual 1 and Individual 2 die from lung cancer, while only the first one is
diagnosed before death. Individual 3 and Individual 4 die from some other cause, while at regional
and local tumor stage respectively. Estimates of lung cancer related outcomes can be obtained by ag-
gregating multiple simulated trajectories, either for the same individual or for a sample of people.
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Figure A.1: Examples of individual trajectories generated by the MILCmodel.

NOTES

1http://cisnet.cancer.gov/lung/profiles.html
2The program can be expanded to describe more complicated patterns by incorporating more hazard functions.
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