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ABSTRACT: Measuring income inequality has long been of interest in applied social and 

economic research in the OECD countries including Australia. This includes measuring income 

inequality at the regional level. In this article, we have used spatial microsimulation techniques to 

calculate small area inequality in Australia using disposable income data which are not available at 
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a small area level, drawing together data from the Australian Census and survey data. Using 

disposable income data increases the strength of the results, as a more accurate measure of 

income distribution is able to be obtained. We estimate inequality at a small area level for the two 

most populous states in Australia – New South Wales and Victoria using conventional Gini 

coefficient methodology. We also examine the differences in inequality between the densely 

populated capital cities of each state and the balance of these states or rural areas. The results 

show that there are marked variations in inequality with distinct pockets of small areas with high 

income inequality in both states and their capital cities. The small area inequality estimation 

enables the policy maker to pinpoint pockets of inequality. This will be useful to identify regions 

that need better targeting/interventions. 

KEYWORDS: Income inequality, spatial microsimulation, Small area. 

JEL classification: D31, D63 and R12. 
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1. INTRODUCTION 

Measuring income inequality has long been of interest in applied social and economic research in 

the OECD countries including Australia. Inequality can have social and political implications as 

Wilkinson (2006) argues this may create social and political conflict, violence and other issues. 

Knowing inequality is important because it helps policy makers to understand better the causes 

of inequality and may help target policy programs better. In comparison to other OECD 

countries, the recent data in late 2000s, shows that Australia was the 9th most unequal of the 34 

OECD members with a Gini coefficient of 0.34 (OECD 2011). This was substantially higher 

than Slovenia, which had the lowest inequality of 0.24, higher than the OECD average of 0.31, 

but much lower than Chile, which had the highest inequality of 0.49 (OECD 2011)1. Further, 

inequality in Australia has been increasing in the last decade, with the data showing the Gini 

coefficient was lower at 0.305 in early 2000s. While this provides us with a picture of where 

Australia falls internationally in terms of income inequality, much more can be said about the 

nature of inequality in Australia, and in this paper we focus on a sub-national analysis of 

Australia’s income inequality. 

Previous Australian studies mostly consider Australian income inequality at a national level, with 

only a few authors studying this phenomenon at a regional level. However, as there is increasing 

interest in studying regional diversity in inequality, as discussed by Athanasopoulous and Vahid 

(2003), policy makers are now interested in examining income inequality within and between 

regions (Chotikapanich et al. 2005; Gregory and Hunter 1995; Lyold et al. 2000). Just as the fruits 

of the recent economic boom are not spread evenly across all regions in Australia (Meagher and 

Wilson 2008; Miranti et al. 2010; Saunders et al. 2008; Vu et al. 2008), it is likely that the average 

Gini we see nationally is in fact much higher (or lower) in some areas. There is some support for 

this notion in previous literature. 

Internationally, there have been several studies that seek to measure inequality at broader 

geographic levels in order to analyze the regional disparities within a country. Trendle (2005) 

explains that the spatial variation of income inequality has been a debate within the field of 

regional science. Examples of this research includes Loikkanen et al. (2002) who examine 

inequality for Finland; Akita (2003) for China and Indonesia; Gray et al. (2003) for Canada; 

Balisacan and Fuwa (2006) for the Philippines and Elbers et al. (2005) for Ecuador. However, 

there are few international studies that have sought to measure inequality at smaller geographic 

levels. Among these studies, Elbers et al. (2003) and Tarozzi and Deaton (2009) have developed 

methods to calculate small area poverty and inequality in developing countries. Further, Ballas 
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(2004) uses microsimulation to estimate the trends in poverty and inequality for two cities in 

England. 

This research contributes to international research on small area inequality and expands the 

previous research in this field with two improvements. First, this research explores inequality for 

small areas using equivalised household disposable income data calculated using spatial 

microsimulation techniques, whilst for example, Athanasopoulos and Vahid (2003) use gross 

income. As disposable income data is not available at a small area level, a spatial microsimulation 

model is used to calculate inequality. Using equivalised household disposable income increases 

the strength of the results, as a more accurate measure of living standards is able to be obtained 

as it measures resources available to households after paying income tax (Lyold et al. 2000) and 

provides a truer measure of inequality: as argued in Harding (1997) there is some evidence that 

the income tax system has become more progressive and provides an offsetting force to growing 

inequality of gross income. Second, the unit of analysis used in this paper is the Statistical Local 

Area (SLA), which is a smaller geographical unit than any that has been used in previous 

Australian studies. Using a smaller spatial unit has several advantages, including the ability to 

pinpoint pockets of inequality, to link these with other small area characteristics, and to assist 

with effective policy and program targeting. An additional advantage of the methodology used in 

our analysis is that it gives a more precise measure of inequality than traditional measures, due to 

the ability of spatial microsimulation to create the distribution of disposable household income at 

the small area level. 

We estimate inequality at a small area using conventional Gini coefficient methodology. We limit 

our analysis to two states - New South Wales (NSW) and Victoria, as the SLAs in these two states 

are relatively comparable in terms of population size, and therefore issues associated with 

different levels of heterogeneity in geographical units of different population sizes (known as the 

Modifiable Areal Unit Problem) are minimized. These states are also the two most populous 

states in Australia, containing around 58 percent of Australia’s total population in 2006.  We 

calculate Gini coefficients for each SLA in New South Wales and Victoria. There are two main 

objectives of this research. Firstly, to provide valuable information about regional inequality at a 

small area level at a more disaggregated geographical level than what has been done previously. 

Secondly, to explore another use of spatial microsimulation and demonstrate its superiority in 

this area so that similar methodology can be applied to estimate small area inequality in other 

countries. 

The remainder of this paper is organised as follows. The following section outlines the data, the 
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methodology (spatial microsimulation and inequality measurement) and the validation used in 

this paper. The third section discusses the findings of the distribution of spatial inequality across 

the states of New South Wales and Victoria and interpretations of the results. Section Four finally 

provides a conclusion, lessons learned and policy implications. 

2. DATA, METHODOLOGY AND VALIDATION 

2.1. Data 

All data used in this study are originally sourced from the Australian Bureau of Statistics (ABS). 

All income data are sourced from the 2005-06 Survey of Income and Housing (SIH). For the 

spatial microsimulation analysis, the 2006 Census and the 2003-04 and 2005-06 ABS Surveys of 

Income and Housing are combined to maximize sample size. Validation is conducted using 

national, state, and small area level data published by the ABS, using the 2006 Census and the 

Confidentialised Unit Record Files (CURF) survey data (2005-06 SIH). A new model based on 

Census 2011 has not yet been constructed. 

The 2003-04 SIH has a sample size of 11,361 households whilst the 2005-06 SIH has a sample 

size of 9,961 households. The sample used by the ABS for the SIH covers occupied private 

dwellings only. In contrast to the Census, the SIH has rich, detailed information about a range of 

socioeconomic variables, including disposable income. This detailed information on the SIH 

allows Gini coefficients to be generated using equivalised disposable income, in comparison to 

Census data which only provides income in ranges and available as gross income only.2 However, 

the SIH does not provide a detailed geographical disaggregation. Therefore, the SIH is suitable 

for analysing inequality at a larger geographical area such as national or state level, but not for 

small areas; while the Census is suitable for analysing many household characteristics at a small 

area level, but does not provide enough income data to create acceptable measures of inequality. 

Our spatial microsimulation techniques bring these two data sources together, using the Census 

to provide reliable small area benchmarks, creating household weights for each SLA, which are 

used to reweight the unit record file from SIH data. The Gini coefficients are calculated at the 

person level using household income, as we assume income sharing within households and, prior 

to conducting the analysis, negative household incomes are recoded to zero to follow the 

standard approach of the ABS (Li 2005). Li (2005) and Saunders et al. (2008) argue some analysis 

has shown that the expenditure patterns of those households with zero and negative incomes are 

inconsistent with their reported low income. 
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Disposable household income is chosen since this is a better measure for income distribution 

analysis as it measures resources available to households after paying income tax (Lyold et al. 

2000) and as argued in Harding (1997) there is some evidence that the income tax system has 

become more progressive and provides an offsetting force to growing inequality of gross income. 

Income in Census data is only available as gross household income. In common with other 

research, disposable household incomes are equivalised, so that rankings of income will then take 

into account the differences that household size and composition make to standards of living. 

Equivalence scales give ‘points’ to each adult and child in the household, and then the 

household’s disposable income is divided by the sum of these points so that incomes can be 

compared across different types of households. Here we use the modified OECD equivalence 

scale, which assigns the following values: 1.0 point for the first adult; 0.5 for each of the 

remaining adults and 0.3 for each dependent child in the household. It should be noted that for 

the purposes of calculating equivalised income, dependent children are defined as only those 

children aged less than 15 years, in common with current Australian practice. 

The spatial unit used in this paper is the Statistical Local Area (SLA). The SLA is one type of 

standard spatial unit described in the Australian Standard Geographic Classification (ASGC) 2006 

and is based on the boundaries of incorporated local government bodies where these exist (ABS 

2007a). The 2006 Census data covered 1,426 SLAs in Australia. There are 200 SLAs in New 

South Wales, 210 in Victoria, 479 in Queensland, 128 in South Australia, 156 in Western 

Australia, 44 in Tasmania, 96 in the Northern Territory, and 109 in the Australian Capital 

Territory. 

There are two main reasons why the SLA is used as the unit of analysis in this study. First, the 

SLA is the smallest unit in the ASGC where there are not substantial issues with confidentiality. 

Second, SLAs cover the whole of Australia (as opposed to other spatial unit such as Local 

Government Areas which do not cover areas with no local government) and cover contiguous 

areas (unlike some postcodes).  

2.2. Spatial Microsimulation Methodology 

Spatial microsimulation is essentially the calculation of a set of small area weights. By combining 

detail available on data-rich surveys with detail available on the geographically rich Census, we are 

able to create synthetic data that accurately estimate certain socio-economic phenomena that are 

closely related to the benchmarks which work as a predictor or determinant in the estimation to 

calculate these weights.  
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A set of data that is directly comparable between the survey and Census data is selected, and 

adjusted into appropriate cross-tabulations and groupings. These tables are known as 

“benchmark” tables, and currently comprise the variables shown in Table 1. Tanton et al. (2013) 

has indicated that the choice of benchmarks needs to be correlated with the estimated variable of 

interest. Given that this particular study investigates inequality in terms of equivalised household 

disposable income, the spatial microsimulation estimates cannot solely depend on gross 

equivalised weekly household income data that are available in the Census data. The simulation 

also needs to include other variables that may affect tax paid and benefits received and 

consequently disposable income estimates. This means other household characteristics need to be 

included in addition to the income variable.  As shown in Table 1, most of the benchmark tables 

are at household level, and only three are “person” level benchmarks.  

Tenure, rent and mortgage structure need to be introduced not only because the Australian social 

welfare system includes rent assistance for eligible households, but also because the pension 

system has differentiated benefits for home owners and non-home owners (Centrelink 2015). 

The differentiated government benefits available to different household profiles are also the 

reason for introducing family composition as a benchmark indicator. Both the number of 

children and adults and the family type (e.g. single or couple households) will impact upon the 

amount of government benefits a household is eligible to receive. Moreover, the addition of 

information about the number of children and adults residing in a household will ensure that the 

equivalised scale is applied correctly.  

Table 1 Benchmark tables used for SpatialMSM 
 

N° Benchmark table Level 

1 All household type Household 

2 Age by sex by labour force status Person 

3 Tenure by weekly household rent Household 

4 Tenure by household type Household 

5 Tenure by weekly household income Household 

6 Persons in non-private dwellings Person 

7 Monthly household mortgage by weekly household income Household 

8 Dwelling structure by household family composition Household 

9 Number of children aged under 15 usually resident in household Household 

10 Number of adults usually resident in household Household 

11 Weekly household rent by weekly household income Household 

12 Gross equivalised weekly household income by age Person 

   

Source: ABS Census Population and Housing 2006 
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Both the survey data and the Census are adjusted and manipulated in order to gain alignment for 

use in the reweighting process. Income values are uprated on both surveys using average weekly 

earnings in order to coincide with 2006 dollar values and mortgages and rents are also uprated 

using a factor derived from the Consumer Price Index. Extensive work has been undertaken for 

all benchmark components to ensure that they have the same definition and coverage on both 

the Census and the SIH (see Cassells et al. 2013) for more detail). 

The reweighting process is carried out for the whole of Australia and followed the methodology 

described in Chin and Harding (2006) and Cassells et al. (2013). The procedure used is a SAS 

macro called GREGWT which uses an iterative constrained optimization technique to calculate 

weights that best represent all the Census benchmarks. The procedure is a generalised regression 

procedure outlined in Bell (2000). Because the reweighting process is an iterative process, there 

are areas where the procedure does not find a solution. If there is no solution found after 30 

iterations, then the process has not converged. Those SLAs where the process does not converge 

are usually SLAs where the population is quite different to the sample population – for example, 

industrial estates or inner city areas.  

However, for some SLAs, it is found that the GREGWT criterion for non-convergence is too 

strict: even after iterating 30 times and not converging, the estimates obtained from the weights 

were still reasonable when compared with the benchmarks. Therefore, a new criterion for 

reweighting accuracy, which uses the total absolute error (TAE) from all benchmarks is calculated 

in order to maximize the number of SLAs for which we can produce valid data. With the latest 

criteria, if the absolute total error from all the benchmarks is greater than the population in that 

SLA, then the accuracy criteria has failed, and the SLA is dropped from any further analysis. 

Generally, the convergence criteria and the accuracy criteria provide the same results when an 

area has obviously not converged; but for marginal areas, the area may reach the maximum 

number of iterations but still provide a reasonable total absolute error. In the final results, TAE 

criteria are used rather than the GREGWT convergence criteria. 

While the acceptance rate of SLAs is overall very high (especially when considered in population 

terms), we lose almost a third of the Northern Territory population in this reweighting process 

however as our research concentrates on New South Wales and Victoria, this does not affect our 

results. 3 It should also be noted that validation of our Gini coefficient estimates results in the 

exclusion of some additional SLAs. Using the TAE criteria, only 2 SLAs are lost from NSW and 

7 SLAs are lost from Victoria. This represents 0.34 per cent of the total NSW population and 

0.52 per cent from Victoria, respectively (Table 2). 
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Table 2 Number and characteristics of failed SLAs 
 

State/Territory Total SLAs Failed SLAs 
Proportion of 

failed SLAs 

Proportion of persons living in failed 

SLAs out of all persons within 

state/territory 

New South Wales 200 2 1.0% 0.34% 

Victoria 210 7 3.3% 0.52% 

Queensland 479 45 9.4% 0.75% 

South Australia 128 7 5.5% 0.32% 

Western Australia 156 17 10.9% 0.87% 

Tasmania 44 2 4.5% 0.15% 

Northern Territory 96 53 55.2% 28.37% 

Australian Capital Territory 109 16 14.7% 0.61% 

AUSTRALIA 1422 149 10.5% 0.79% 

     

Source: SpatialMSM/09C applied to SIH2003-04 and SIH2005-06, ABS Census Population and Housing 2006. 

One SLA is further excluded from the sample where the estimated population size is less than 30 

persons, as this population size is considered to be too small to produce reliable estimates. In the 

end we use 197 SLAs from NSW and 198 SLAs from Victoria. 

2.3. Inequality Measurement Methodology 

There are various ways to measure inequality (see ABS 2006b) for a summary of measures of 

inequality including the Theil and Atkinson Index). This paper uses a Gini coefficient which 

measures disparity between each person in the population and every other person in the 

population through income. Gini coefficients are used to measure inequality for two reasons as 

follows: (i) the Gini coefficient is the most commonly used summary measure (Athanasopoulous 

and Vahid 2003; ABS 2006b); and (ii) Gini coefficients are the only statistical measure of income 

distribution (at the national and state level) published by the ABS and thus allow us to validate 

our spatially microsimulated small area Gini coefficient estimates.  

The Gini coefficient can be calculated by examining the Lorenz curve. The Lorenz curve is a 

curve with the horizontal axis showing the cumulative proportion of the persons in the 

population ranked according to their income and with the vertical axis showing the 

corresponding cumulative proportion of equivalised disposable household income. 

The Gini coefficient has a value between zero and one. A value of zero means perfect equality, a 

situation in which everyone in the population lives in a household with the same level of 

equivalised income. A value of one indicates perfect inequality, a situation where one person 

holds all the income. Smaller Gini coefficients indicate a more equal distribution of income.  

In this paper, as explained earlier, the household weights generated from the spatial 

microsimulation model are applied to calculate Gini coefficients at a small area level for the 
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whole of Australia. Therefore, the estimates of Gini coefficients are calculated using a weighted 

Gini formula as adapted in Harding and Greenwell (2001).  

Applying household weights in each SLA to calculate Gini coefficients is challenging as there is 

no actual unit record data to calculate the Lorenz curve. Therefore, as highlighted in Harding and 

Greenwell (2001), the income distribution is determined by ranking people by their equivalised 

household income (based on the spatial microsimulation results). Consequently, we calculate the 

Gini, by applying the weights to the whole income record in the SIH data, so if a household has 

five people (as the weight), their equivalised income will be counted five times, not once.  

2.4. Validation 

As the estimates of the Gini coefficient are calculated using spatial microsimulation techniques, 

we undertook aggregate data validation in order to check the accuracy of our synthetic estimates.  

The validation was conducted using aggregated equivalised disposable household income data 

from the 2005-06 SIH. Income collected from the survey is argued to provide more accurate 

estimates of the distribution of income than income collected from the Census as interviewers 

are involved in collecting data directly from the survey respondents, whereas for the Census, the 

respondents complete the Census questionnaires without an interviewer’s guidance (Maxwell and 

Peter 1988). 

The Gini coefficients estimated at an SLA level were aggregated to the state and capital city and 

balance of state levels or rural areas in order to compare these results directly with results 

available at this geographic level from the SIH. Specifically, we summed the weights of each SLA 

in the region then apply this weight to the unit record file from the SIH. 

Table 3 indicates that while the Gini coefficient estimates from spatial microsimulation tend to be 

higher than estimates from the 2005-06 SIH, the results are generally aligned. The slightly higher 

estimates from the spatial microsimulation are possibly due to benchmarking to Census data, 

which may have a greater amount of persons reporting lower incomes than the sample in the 

SIH, however overall the results are very promising. It was also found that the Gini coefficient 

estimates for the balance of each state have greater differences than those estimated for each 

capital city. 
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Table 3 Comparison of Gini coefficient estimates from the 2005-06   
Survey of Income and Housing and SpatialMSM 
 

State Capital City / Balance of state SpatialMSM/09C 2005-06 SIH 

New South Wales All  0.322 (+)  0.317 

 Sidney  0.324(+)  0.321 * 

 Balance of state  0.300(+)  0.287  * 

    

Victoria All  0.306  0.306 

 Melbourne  0.308(-)  0.309  * 

 Balance of state  0.290(+)  0.274  * 

    

AUSTRALIA   0.308(+)  0.307 

    

+ (-) indicates where the estimates from spatial microsimulation are higher or lower than the estimates directly from 2005-06 SIH; 

 *indicates that the coefficients have been calculated by authors. The Gini data at the capital city and balance of state level are not available 
from the ABS publication.  

Source: ABS (2007b; 2008) and SpatialMSM/09C applied to 2003-04 and 2005-06 SIH, ABS 2006 Census of Population and Housing. 

The aggregated data validation also shows that in general the capital cities have a higher Gini 

coefficient when compared to the rural areas. This finding confirms previous research (Bray 

2001; Lloyd et al. 2000). This may reflect that the capital cities in Australia are more 

heterogeneous in terms of income than the rural areas, as cities have a predominance of upper-

middle income households together with very low income households (Lloyd et al. 2000). 

However, our results also show that capital city estimates are closer to the estimates from the 

SIH than regional areas. Table 3 also shows that incomes in New South Wales are distributed 

relatively more unequally than incomes in Victoria. 

3. SMALL AREA RESULTS 

3.1. Spatial distribution of inequality 

The following section will discuss geographic distribution of inequality in both NSW and 

Victoria, both in the capital cities and in the rural areas by focusing the patterns at a small area 

level.  

Figure 1 shows the natural breaking of inequality for New South Wales SLAs. The 197 areas are 

ranked and then divided into five categories according to where the greatest differences are in the 

data. Similarly figure 2 applies the same natural break categories for the whole of New South 

Wales to Sydney, the capital city of NSW. The palest colour on the map represents areas that 

have the lowest income inequality category (the lowest Gini coefficient) while, in contrast, the 

darkest colour on the map represents areas with the highest income inequality (the highest Gini 

coefficient). The missing data on maps represents the excluded SLAs due to inadequate estimates 
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and population sizes, as discussed earlier. The Gini coefficients in New South Wales vary 

between 0.262 and 0.369.  

Figure 1 Gini Coefficients by Statistical Local Area, New South Wales 

 

Source: SpatialMSM/09C applied to 2003-04 and 2005-06 SIH, ABS Census Population and Housing 2006 

Comparing figures 1 and 2, over 50 per cent of SLAs in the highest income inequality category 

(29 SLAs) lie within the capital city - Sydney (16 SLAs).  SLAs with high income inequality are 

mostly clustered in Sydney, with some additional high inequality SLAs scattered throughout the 

rural areas of NSW. In Sydney, these SLAs run in a horizontal corridor, from east to west, 

starting at the inner city suburbs of Waverley, Woollahra, Randwick, Ashfield and Strathfield, and 

flowing out along the western motorway (M4) and the major train line, towards the western 

suburbs of Auburn and Parramatta. For the rural areas of New South Wales, most SLAs with 

high inequality are concentrated in the remote far west and north western areas of New South 

Wales.  

However, there are several small areas with high income inequality scattered throughout New 
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South Wales, including Conargo, Urana, Palerang and Mid-Western Regional. Further, Newcastle, 

a major urban area, just north of Sydney (unable to be identified readily on the map) is also an 

SLA that falls within the highest income inequality grouping. 

 

Figure 2 Gini Coefficients by Statistical Local Area, Sydney 

 

Source: SpatialMSM/09C applied to 2003-04 and 2005-06 SIH, ABS Census Population and Housing 2006 

Figures 3 and 4 show the spatial distribution of income inequality for Victoria and Melbourne, by 

applying the natural break classification for the whole of Victoria. Figure 3 shows the 198 

Victorian SLAs divided into five categories and similarly for Melbourne, the capital city of 
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Victoria (Figure 4), using the same categories. As with New South Wales, the palest colour on the 

map represents the areas with the lowest income inequality and the darkest colour, areas with the 

highest income inequality (the highest Gini coefficient).  
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Figure 3 Gini Coefficients by Statistical Local Area, Victoria 

 

Source: SpatialMSM09C applied to 2003-04 and 2005-06 SIH, ABS Census Population and Housing 2006
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Figure 4 Gini Coefficients by Statistical Local Area, Melbourne 

 

Source: SpatialMSM09C applied to 2003-04 and 2005-06 SIH, ABS Census Population and Housing 2006 

Figure 4 shows that the Gini coefficients in Victoria vary between 0.247 and 0.407. Figure 4 also 

shows that there are only five SLAs in Victoria that fall within the highest category of inequality, 

and all of these SLAs lie within the Melbourne city statistical division. These SLAs are clustered 

in the inner city area of Melbourne and include the SLAs of Melbourne – Remainder, Port 

Phillips – West, Stonnington, Yarra – North and Yarra – Richmond. No SLAs in the rural areas 

of Victoria fall into the highest inequality category, however, from Figure 4, we can see that there 

is a large cluster of SLAs in the west of the state that fall into the second highest category of 
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income inequality – for example, West Wimmera, Hindmarsh, Moyne, Yarriambiack, Grampians 

and Corangamite.  

From these data it can be seen that in Victoria, all high inequality SLAs fall within the capital city 

- Melbourne, rather than the rural areas of Victoria. However for New South Wales, the high 

inequality SLAs are spread evenly between the rural areas and capital city of Sydney, with a little 

over 50 per cent of high inequality SLAs found in Sydney (although it should be noted again that 

the definition of ‘high inequality’ in these maps differs between the two states due to the 

differences in natural breaks). 

3.2. Discussion 

Our small area analysis shows that some areas in NSW and Victoria have been categorised as 

high inequality areas and some areas as low inequality areas. While these findings may be useful 

for the purpose of policy interventions, the results and their implications should be interpreted 

cautiously, due to the complexities inherent in understanding the phenomenon of high inequality 

in small areas. For example, small areas with low inequality may not necessarily reflect a more 

cohesive society overall or a lack of social and economic problems. A number of studies, 

especially those from United States have indicated that low inequality in small areas may also 

point towards segregation issues. Watson (2009) has argued that inequality may affect income 

sorting that leads to income segregation at the neighbourhood level. Reardon and Bischoff (2011) 

echo these results stating that lower income households tend to live in neighbourhoods with 

lower incomes while higher income households tend to live within neighbourhoods with higher 

incomes.  Income segregation may have a negative impact on social, political and health related 

outcomes. Racial tensions and increasing crime rates are examples of these unwanted outcomes 

(Bayer et al. 2014; Sethi and Somathan, 2004; Watson 2009). Thus, policy makers need to 

consider the balance between the potential benefits of reducing within-area inequality and the 

potential adverse impact of segregation, particularly where this has implications for high levels of 

neighbourhood or interregional inequality.  However, it is not clear to what extent international 

findings are relevant in an Australian context, and research has found more inequality between 

neighbourhoods in the United States than in Australia (Hunter 2003). 

In considering the characteristics associated with inequality, previous research has uncovered 

factors that have been found to be determinants of inequality in Australia (see for example 

Maxwell and Peter 1988; McGillivray and Peter 1991; Trendle 2005). These factors include 

variables that are often associated with low income, including immigration status (Greig et al. 
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2003; McGillivray and Peter 1991), Indigenous status (Trendle 2005) and public housing tenancy; 

as well as those that are closely related with high income, such as those with ‘high-end’ 

occupations, working as professionals or managers (Lyold et al. 2000) or those who have higher 

educational attainment (Glaeser, et al. 2008; Maxwell and Peter 1988; Trendle 2005). McGillivray 

and Peter (1991) and Trendle (2005) also examined the association between female labour force 

participation and inequality. However, previous literature has shown that the relationship of 

many of these variables to regional inequality is often ambiguous.  

Table 4 shows the average proportion of persons in each Gini coefficient group by selected 

characteristics for all of New South Wales. The groups are selected based on the natural breaks 

which were applied on the maps.  From Table 4 it can be seen that SLAs in the highest inequality 

group are characterised by, on average, high proportions of immigrants or Culturally and 

Linguistically Diverse (CALD) communities, Indigenous persons, people working as managers 

and professionals, female labour force participation, people having a bachelor degree or higher, 

and people living in public housing (in comparison to other Gini coefficient groups).  

Table 4 Average proportion of persons in each Gini coefficient group by selected characteristics,  
all New South Wales, 2006 
In % 

Gini coefficient -  

natural breaks * 

Immigrants Indigenous Managers and 

professionals 

Female LFPR Bachelor + Public Housing 

1 lowest inequality 16.37 2.61 28.56 56.25 21.43 3.42 

2 12.21 3.27 30.59 51.28 20.27 3.94 

3 12.73 3.06 33.97 51.12 22.13 3.54 

4 15.53 4.62 39.70 52.04 25.55 3.33 

5 highest inequality 23.79 7.19 46.17 54.59 33.46 4.51 

       

Source: ABS Census Population and Housing 2006 

Table 5 shows similar results for Victoria. In general, SLAs which fall into the highest inequality 

group in Victoria, except for the proportion of population who are Indigenous (no clear pattern), 

show the same pattern as in New South Wales and have high average proportions of immigrants, 

people working as managers and professionals, female labour force participation, persons with a 

bachelor degree or higher, and persons living in public housing.  

It is interesting that the lowest inequality group in New South Wales and Victoria also has high 

proportions of CALD, and high female labour force participation. This suggests that the 

relationships between these variables and inequality are complex and future research is warranted. 
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Table 5 Average proportion of persons in each Gini coefficient group by selected characteristics, 
all Victoria, 2006 
In % 

Gini coefficient -  

natural breaks * 

Immigrants Indigenous Managers and 

professionals 

Female LFPR Bachelor + Public Housing 

1 lowest inequality 17.98 0.56 25.48 59.97 22.09 1.57 

2 14.29 0.71 30.11 55.43 23.71 2.47 

3 14.13 1.07 33.41 51.41 21.96 2.55 

4 16.99 0.53 44.22 53.17 32.62 2.08 

5 highest inequality 30.18 0.31 56.23 60.79 54.69 9.69 

       

Source: ABS Census Population and Housing 2006 

4. CONCLUSION, LESSONS LEARNED AND POLICY IMPLICATIONS 

This research has demonstrated that spatial microsimulation is an effective analytical tool that can 

be used to enhance estimates of inequality at small geographic levels. The validation process 

shows that our results are robust, and are closely aligned with the aggregate direct estimates 

calculated from the 2005-06 Survey of Income and Housing.  

The results show that although there are slight differences in terms of magnitude, the weights 

give reasonable results for the vast majority of small areas in these two states, with the broad 

regional rankings being very similar across both the Census and the synthetic estimates.  

Our research has shown that there are clear groupings of small areas with high income inequality 

in Sydney, Melbourne and rural areas of New South Wales, but not in the rural areas of Victoria. 

There are several key lessons learned from this analysis of small area inequality. Firstly, the paper 

has demonstrated the use of a spatial microsimulation technique to estimate inequality at small 

area level that can be applied in other countries. Secondly, the findings of this research show that 

inequality does differ considerably when drilling down to smaller spatial areas. For example, we 

have found that most of small areas with the highest income inequality are clustered in the capital 

cities but not necessarily in the rural areas. 

These key lessons are important, as they can assist to inform regional policy aimed at reducing 

inequality. By knowing which small areas are more unequal in regards to income, together with 

the characteristics of these areas, policy makers and service providers are able to better 

understand the intricacies of inequality and identify possible drivers, which can aid in more 

efficient targeting of programs and policy. Nevertheless, it is important to note that examining 

small area inequality does not in and of itself lead to definitive conclusions about the overall 

wellbeing of an area. In particular, low inequality does not necessarily equate to better community 

outcomes, nor does high inequality necessarily relate to poorer outcomes. Low inequality within 
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an area may be a symptom of a highly segregated population, which in turn can be associated 

with interregional inequality and social unrest. 

Future work in this area will concentrate on the determinants of regional inequality in order to 

examine the variation of inequality across small areas in more depth, including taking into 

account the spatial autocorrelation that exists between small areas. The literature suggests that the 

relationships between the determinants of inequality are complex and often ambiguous. Other 

planned work includes applying an inequality decomposition technique to separate ‘between‘ and 

‘within‘ regional inequality and to apply the spatial microsimulation technique further in order to 

model policy changes in terms of examining the impact of  income distribution policies on 

inequality at a small area level.  
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