
INTERNATIONAL JOURNAL OF MICROSIMULATION (2010) 3(2) 80-89

Techniques for Managing Changes to Existing Simulation Models

Sally Edwards

Department for Work and Pensions (DWP), Model Development Unit, Strategy Directorate, 6th Floor,
Caxton House, Tothill St, London, SW1A 9NA, UK; email: Sally.Edwards@dwp.gsi.gov.uk

ABSTRACT: In This paper provides guidance for managing the enhancement and maintenance of an
existing microsimulation model. It focuses on techniques and practices that have been developed to
maintain Pensim2; the Department for Work and Pensions (DWP) dynamic microsimulation model that

simulates state and private pension entitlement. This guidance is appropriate for any type of model.
Standard project management techniques and bespoke simulation model procedures are explained. This
guidance is aimed at new modellers and project managers and is particularly relevant for models that are
supported by a team, rather than an individual.

Models are generally used for many years after they are launched, so it is essential that strong
maintenance procedures and project governance structures are put in place. Specifically, this paper

includes guidance and examples of structured Change Control processes that are used to manage
enhancements and fixes to the model. The Change Control process includes: defining requirements,

estimation, design, code reviews, testing/validation, managing multiple modellers changing the same
programs and the use of development checklists. Structured Release management guidance is also
included in this paper

1. INTRODUCTION

Typically dynamic microsimulation models are
developed by Economists and Statisticians, who
have an extensive knowledge of econometrics and
the economic theory that underpins their models.

Often modellers do not have a formal IT
development background or training, so non-
standard development and maintenance
procedures are often used.

The purpose of this paper is to provide clear
guidance in how to use standard techniques to

manage the maintenance of existing dynamic
microsimulation models, after the first version of
the model has been released. This guidance is not
limited to microsimulation models, but could be
applied to any computer system, regardless of
size, number of developers or users. Most of the
recommendations documented in this paper are

standard practices in use throughout the IT
industry, although the examples have been
tailored to suit the maintenance of a
microsimulation model.

Microsimulation models typically take between one

and five years to develop, depending on the level
of complexity of the events being simulated. At
the end of the Development Stage, the model is
released to the organisation. Shortly prior to
release, the model is thoroughly validated to
ensure that the results can be used with
confidence. Model users analyse the model

outputs in order to assess potential and future
economic policies. After the model has been
initially released, the model moves into the
Maintenance Stage. During this stage, a model is
improved and enhanced, with new releases of the
model being implemented on a regular basis, with
rigorous validation taking place prior to each

release. Usually a new release will contain a
package of changes. Models need to be

continuously enhanced and maintained otherwise

they quickly become out-of-date and unusable.

Microsimulation models are based on a number of
assumptions about the future which are obtained
from external sources, e.g. inflation rates from the

Government Treasury department, Demographic
rates from the Government Statistics department.
These assumptions are revised periodically and
the models that use them must be modified to
reflect these changes in order for the results of

the models to remain credible. Enhancements are
also required as a result of changes to legislation

that must be reflected in the model.

It is essential that models are maintained and
documented in a structured manner, so that the
differences in outcomes from a new version of the
model compared to the outcomes from a previous
version can be explained and validated. Also,

when questions arise about how a particular
change has been incorporated into the model, it is
essential that the associated documentation is
clear and easy to locate. Documentation detailing
how to change assumptions in the model is also
essential as they need to be modified on a

periodic basis.

Typically, there are more changes required than
there are resources to code them, so some
changes requested will inevitably be delayed or
dropped. It is important that all the stakeholders,
i.e. model users, senior managers and developers,

have an opportunity to be involved in prioritising
the requests and that a suitable forum is in place
for this to occur. If stakeholders don’t gain a
sense of ownership and control over the
development of the model, there is the risk that
they may lose confidence in the model outcomes
and the model will fall into disuse. This requires

the change process to be well structured and
accessible to all stakeholders.

This paper aims to provide simple, easy to follow

EDWARDS Techniques for Managing Changes to Existing Simulation Models 81

guidance. The techniques described are straight-

forward and commonly used, but it took the
Pensim2 team some time before these

maintenance procedures were fully developed and
utilised. It is hoped that these techniques may be
useful to other modellers.

2. CONTEXT

2.1. Models at DWP
The dynamic micro-simulation models used at the
DWP are based on the standard architecture,
Genesis. This architecture enables each model to
be coded in standard Excel spreadsheets that are
easy to develop, understand and modify. These
sheets define the parameters, the filters, the

regressions and probability matrices used in the
model. The Genesis engine generates the

simulation model code from the Excel sheets and
runs the model for the required simulation period.

The dynamic micro-simulation models generated
using the Genesis modelling tool and used at the

DWP are: Pensim2, which models private pension
and state pension income to 2100; Inform, an
Integrated Forecasting model for working age
benefit claimants to 2020; a Suite of Benefit
Forecasting models for short/medium term
forecasts; and the Labour Force Survey (LFS)

Model of employment & demographics to 2020.

2.2. Developing the Maintenance
Procedures

A number of factors were taken into consideration
when the DWP modelling team developed the
procedures that are documented in this paper.

These factors have caused problems in the past
for the team, so the techniques that have been
developed attempt to alleviate the risks and
create an easy environment in which modellers
can work.

Several modellers work on the same model at the

same time, thereby creating the possibility that
new code can be accidentally over-written if the
development is not carefully managed. The
modelling unit has a large staff turnover, with
junior economists moving to a new post each
year, so it is essential that the models can be

quickly and easily understood by new team
members. Each model has a range of stakeholders
from across the Department for Work and
Pensions. Some models also have stakeholders
based in other government departments. These
stakeholders are predominantly policy analysts
and benefit forecasters.

The models are intended for long term use (15
years+) and consequently most of the people who
use or maintain the models were not involved
during the initial development stage. Hence the
code and documentation must be as clear as
possible. If the models were not structured in a

manner that is easy for a new modeller to
understand then the models would quickly fall into

disuse and become un-maintainable.

Although these factors are not common to all
modelling units, the general guidelines are

particularly applicable if a model is run or
maintained by more than one person, or if the
model will be handed over to someone else in the
future. Even when a model is maintained by one

modeller, these guidelines may still be useful to
follow – as they do not rely solely on a good
memory.

3. DOCUMENTATION

This section outlines the documentation that the
DWP modelling team have developed and

maintain for the Pensim2 model and the Genesis
modelling tool. This level of documentation is

important for the modelling team, particularly the
department has a large turnover of users and
modellers, who need to gain a quick
understanding of the model. Not all models will
need the level of documentation listed here, but

the documents considered essential for all models
have been marked.

Some of the documentation that was produced
during the development stage of the project was
not considered relevant to keep up-to-date during

the maintenance stage. This included detailed
technical design specifications and the justification
for design & development decisions.

The analytical papers supporting each module

within the model have been filed and are
accessible to all users.

The following key documentation for the Genesis
modelling tool is kept up-to-date and reviewed
and revised with each release of the modelling
tool: Training materials, User Guide and Problem
Resolution Guidance.

For the Pensim2 model, the following documents
are kept up-to-date and revised with each
release: How to Run the Model guidance;
Assumptions audit; Release Document; also all
changes to the model are documented in detail, as
explained in the Change Control section below.

Much of the documentation was produced after
the first micro-simulation model was released.
There was a consolidation period, during which
time the essential documents were produced and
the maintenance procedures were put in place.
These documents and processes have been

invaluable, as there are a large number of users
who access and run the models themselves and
also a high turnover of modelling and user staff.
Without the supporting documentation, extensive
usage of the models would not have been viable.

3.1. Training materials
A short training course is run on a regular basis

for new users. The training course materials
include a Powerpoint presentation, sample models

and a self-study pack, which explains how to

EDWARDS Techniques for Managing Changes to Existing Simulation Models 82

develop and run a Genesis model. The training

material is updated with each new release of the
Genesis tool.

3.2. User Guide (Essential)
An extensive User Guide provides a detailed
explanation of the Genesis modelling tool,

particularly explaining how the standard
spreadsheets are defined and the options that can
be used. It is a comprehensive reference manual
and is used by modellers to dip into when
questions occur about the syntax of the templates
spreadsheets.

3.3. Problem Solving Guidance
Users have full access to the dynamic micro-
simulation model code at DWP. They are provided

with a training course when they begin to use the
models. The users can modify the model
parameters and the code, and run their own
versions of the models to enable them to try out

various policy scenarios.

The flexibility this provides for the users
consequently has a support overhead for the
modelling team, as the users sometimes
inadvertently introduce errors into their own

versions of the models.

A Problem Solving Process and a Problem Solving
Guide are available for the model users. The
process lists the steps to be followed take when
encountered with a problem – one of these steps

is a referral to the Problem Resolution Guide. The

Problem Resolution Guide lists all the errors that
are issued by the Genesis code generator and
provides an explanation of the likely cause and
suggestions to fix the code.

We have found the Problem Solving Guide to be
particularly useful, as errors tend to re-occur, but

their resolution is often forgotten. This Guide has
been built up over the years as is editable by all
users.

3.4. How to Run the Model (Essential)
A clear, concise document explaining how to run
the model is essential for all models. This is

written for a new user with no previous experience

of simulation modelling.

3.5. Assumptions Audit (Essential)
An Assumptions Audit log containing the changes
to the assumptions in the model is an important
document to maintain. Assumptions are often
questioned, so a clear explanation of where they

have come from and when they were last updated
is vitally important.

3.6. Release documentation (Essential)
When each Release is implemented, a Release
Note is issued explaining how the specific changes
cause the differences in the outcomes and how

the changes interact to give overall differences.
The Release Note is aimed at users and does not

include any technical detail, but it includes

references the change request and problem logs
that have been included in the release. If desired,

the user can review the change in more detail via
the Change Request (CR) or Problem Log (PL)
reference number.

4. MAINTENANCE PROTOCOLS USED AT DWP

4.1. Overview

Processes
The modellers use a set of key processes during
the maintenance of a model. Each process is
documented with an overview diagram and a
checklist. The processes followed are: Change

Management, Problem Management, Release
Management, Software Configuration

Management. Examples are provided below for
each of these processes.

4.2. Change Management and Problem
Management

The Change Management and Problem
Management processes are very similar and this
guidance applies to both changes and problems. It
is recommended that changes and problems are
recorded separately as problems are generally
considered high priority and they usually need to

be fixed in the next release of a model (see Figure
1 – Change Request / Problem Log process).

Every change / problem fix goes through a formal

Change Request / Problem Log procedure. The
term “change” in this guidance is used to
represent both changes to the original

requirements and to “problems”, i.e. errors in the
code that need to be fixed.

A change to the model may be generated by a
request from any user of the model, a regular
scheduled change to specific assumptions or a
request by a modeller to tidy or improve the

model without affecting the outputs.

A Change Register / Problem Log Register is
maintained listing all changes carried out to the
model, including those that don’t affect the results
or are considered trivial. Each Change Request

(CR) / Problem Log (PL) is assigned a reference
number (see Figure 2 – Change Control Register).

All changes are formally recorded. A CR or PL form
is completed before the model code is amended.
The change requirements or problem details are
clearly documented in the CR / PL form – this may

be carried out by model user or a member of the
modelling team. Any background material that is
relevant is also included and occasionally strings
of emails are added to the CR / PL form.
Documenting the requirements and supporting
evidence is particularly important, especially when
the model assumptions are being modified, as

these are often questioned at a later date (see
Figure 3 – Change Control Form).

EDWARDS Techniques for Managing Changes to Existing Simulation Models 83

The impact of the change is assessed, an estimate

is produced and the modelling team assess
whether or not the change is viable and sensible.

Each model has a User Group, which consists of
individuals representing the users and the model
developers. The User Group assess all the changes
put forward and determine whether or not to

include the change in the model, based on the
cost and the impact. The User Group also agree
which release of the model is appropriate for the
change.

Where a large change is taking place, the design
is documented and reviewed by the users before it

is included in the model. This is a valuable stage
that ensures that the requirement has been
accurately understood and this enables the users
to gain a better knowledge of how the model is
structured. The design stage is signed-off before

the model code is changed.

Complex code changes are peer reviewed by

another member of the modelling team. All code
changes that are associated with the change are
commented with a reference to the CR / PL
number.

Each change is added to the Released “live”
version of the model one at a time. This enables
the user who has requested the specific change to
check that the outputs are appropriate and to
sign-off the change for inclusion in the next
Release. Different requirements are not bundled

up into a single change request. By separating the
individual changes, it is easy for the impact of
each specific change to be clearly identified and it
also enables a specific change to be easily
removed from a release if necessary.

Change Request / Problem Log Process

Figure 1 Change Management and Problem Management Process, as detailed in section 4.2

M
o

d
e
ll
in

g
 T

e
a
m

B
u

s
in

e
s
s
 U

s
e
rs Raise

Change

Request

or

Problem

Log

Initial

Assess-

ment &

estimate

Clarify

Requirement

-

Prioritise &

Agree

timescale

Design

solution

Sign-off

Design

Sign-off

Code

-

 Peer

review

-

Unit Test

Unit test

Add to

Release

version

of model

Sign-off

change

in

Release

version

EDWARDS Techniques for Managing Changes to Existing Simulation Models 84

Change Control Register – sample

Figure 2 Sample Change Control Register, as detailed in section 4.2.

CR No. Summary of proposed

change

Raised by Date

raised

Priority

(H/M/L)

Who? Estimate Status Release

CR0052
Revise retirement age

mortality equations

State

Pensions

team

10/11/09 High Steve 2 months
in

progress

Planned for

release V09

CR0053
Remove YD table and all

references

Modelling

team
05/02/09 Medium John 1 week released

Included in

release V08

CR0054 Revise Fertility equations
Demography

Unit
11/09/09 Low John 4 weeks on hold

Post release

V09

CR0055
Add new Migration

module

Demography

Unit
11/09/00 Medium Cathal 6 months

in

progress

Planned for

release V09

CR0056
Revise Private Pension

membership equations

Private

Pensions
11/09/00 Medium Sally 6 weeks on hold Post V09

CR0057
Revise disability module

for SDP

Disability

team
13/09/09 High Thomas 2 months released

Included in

release V08
Note: all changes to the model are included in the register, including those that do not affect the outputs.

Change Control Form - sample

Figure 3 Sample Change Request, as detailed in section 4.2.

Change Control Form

CR Number CRnnnn

1. Project Name

2. Raised by
(name & contact details)

3. Date Raised

4. Details of Change (including reasons for change & benefits where applicable)

5. Importance Reason

 Mandatory
 Essential
 Highly Desirable
 Desirable

6. Change Sponsor

7. Summary of Impacts

8. Estimate

9. Decision Reason

 Accepted

 Rejected

 Escalated

 Deferred

Note: a form is completed for every change, including those that do not affect the outputs.

INTERNATIONAL JOURNAL OF MICROSIMULATION (2010) 3(2) 80-89

4.3. Release Management

New releases of models are carefully controlled
and thoroughly validated before they are released
to the user community. Each model has a new
Release implemented approximately every 6 to 9
months. If a major problem occurs and needs to

be fixed before a scheduled release is
implemented, then a sub-release is considered,
but these are rare and most problem are fixed in
the next scheduled release.

Each Release includes one or two large
components, e.g. new Base Data, new Migration

module, new State Pension policy, together with a
number of smaller changes and problem fixes.
Usually between 20 and 30 changes are
implemented in each scheduled release.

The provisional timing and content of each
Release are agreed with the Model User Group

several months before the release date, with
additional changes accepted up until the cut-off
date, three weeks before the Release date.

Each Release is built and signed off in a step-by-
step process, with each change added to the

model individually, as the new release is built (see
Figure 4 – Release Control Log). The impact of
each change is reviewed & signed off by the user

who has requested the change and also by any

other users who are interested in the difference in
outputs caused by change. By implementing the

changes one at a time, the impact of each change
can be fully understood and agreed. Although this
is a time consuming process, it gives the
modellers and users confidence in the results and

removes the stress, confusion and risk from the
release process. The final stage in each release is
to remove redundant code and variables that are
no longer required.

Prior to adopting the step-by-step approach it was
very difficult to explain the differences in outputs

between different releases, particularly when
changes conflicted with each other. It was also
easier to inadvertently slip in an error to the
model when we attempted to implement multiple
changes at the same time.

All previous versions of the model remain

available for access, if required. A clear audit trail
is maintained detailing the new functionality
included in each release. This is documented in a
Release Note that is issued with each release of
the model.

Maintaining a checklist of the tasks that need to
be carried out for a Release can be particularly
useful (see Figure 5 – Release Checklist).

Release Control Log - sample

Figure 4 Sample Release Control Log, showing how each change is added to the model code and signed

off one at a time

V09_00 Test Versions

Test

version

Added to

version
Change

Run

to
Due Sign-off Status

V09_A V08
 + PL0178 Correct Accumulation

errors
2050 Dec-08

Model

developers

only

signed-off

V09_B V09_A
+ CR0101 Revised Private Pension

Assumptions
2060 Jan-08

Private

Pension

Users

signed-off

V09_C V09_B + CR0122 new Housing Module 2100 Jan-09
Housing

Users
signed-off

V09_D V09_C
+ CR0134 Revised Economic

assumptions
2100 Feb-09 All Users

with users

awaiting

sign-off

V09_E to

V09_S

V09_T

(Final V09)
V09_S + CR0144 remove redundant code 2100 Jun-09

Model

developers

only

EDWARDS Techniques for Managing Changes to Existing Simulation Models 86

Release Checklist – sample

Figure 5 Sample Release Checklist

Release: V08

Release Date: end of June 2008

No Step who

1
Agree Release date. Major releases will be planned in a long term
release schedule. Minor releases may be required to carry out critical
fixes, key assumptions changes or systems changes

User Group

2 Agree Release content and prioritise changes User Group

3 Agree priority for each element of the release with the user group User Group

4
Agree Release Freeze date, generally 3 weeks before Release date,

after which time new changes are not accepted
User Group

5 Determine order in which the changes are going to be incorporated Modelling team

6 Maintain the Change Control Matrix throughout Release development Release manager

7
Agree key criteria for Test Versions, e.g. sign-off responsibility,
timing

Release manager

8 Ensure development tasks have been completed for each component Release manager

9 Build each test version
Model developer

responsible for change

10 Request sign-off for specific test version
Model developer

responsible for change

11

For changes that are not signed-off, determine whether the change

should be removed from the release. Liaise with and notify user
group members and development team

Release manager

12
When a test version is signed off, update the Test Version log and

Change Control Matrix (shade green to show change included)
Release manager

13
When a change is removed from a release, update the Test Version
log and Change Control Matrix (shade red to show change removed)

Release manager

14 Remove redundant code Modelling team

15
Produce/maintain documentation, including: Release Note, How to
Run the Model Guidance, Assumptions Audit

Release manager

16 Create a new version of the How to Run the Model guidance Modelling team

17 Has the base data changed? If so, create new base datasets Modelling team

18 Copy the final test version to the Released area Release manager

19 Notify all users that a new release of the model is available Release manager

21 Carry out Post Implementation Review, if appropriate
Modelling team & User

Group

4.4. Software Configuration Management
The term software configuration management is a
general term that is used to describe the control
and maintenance of software. This is essential for
a number of reasons. A modeller may need to
access or re-instate a previous version of the code
and an audit trail of changes must be maintained.

It is also important if multiple people work on the

same model at the same time. It can be difficult to

keep track of changes to the code and easy for
one person’s change to inadvertently over-write
another change that is being implemented by
someone else in the same release.

Most organisations use standard source code
control software, and it is recommended that this

software is used if it is available. If not, then a
Change Control Matrix (Figure 6 – Change Control

Matrix) can be used to track the changes to

EDWARDS Techniques for Managing Changes to Existing Simulation Models 87

specific modules within a model. The column

headings show the test version reference number
and the individual cells indicate which modules

have been changed for each test version. As a
release is built, modellers can identify whether a
module they are changing has been altered by
another member of the team, as different sets of

changes may need to be integrated. In the

example, columns are colour coded to indicate
when a test version has been signed-off (green)

or awaiting sign-off (yellow). Each change is
applied to the previous signed-off version of the
model, with the individual changes added one at a
time.

Change Control Matrix - Sample

Figure 6 Sample spreadsheet used for Software Configuration Management

Change Matrix - V09 V09_00A V09_00B V09_00C V09_00D V09_00E V09_00F V09_00G

Fix

pension

start date

Remove

redundan

t tables

Hide

historic

rows

Alter

Cont-

ribution

rates

New

Housing

module

Fix

Pension

age error

De

miminis

rule

CR/PL PL0181 CR0112 CR0074 CR0116 CR0179 PL0178 CR0127

PrivPenInh Mod

TrivialCommutation Mod

TCSmallPots Mod

ClaimPension Mod Mod

PersonJoinScheme Mod Mod Mod

PersPenMembership Mod Mod

GrossAPAccrual Mod Mod

Percentile Del

IncomePercentile New

Guidance:
Enter new / mod / del as required
Column Shading:
yellow - change has been tested internally
green - change has been signed off by users
red - change is pulled from release (include comment)
none - under development

5. PROJECT MANAGEMENT

5.1. Project Planning – High Level
High level project planning is recommended in
order to provide a clear idea of the work required
for each release of the model – this also enables

the project manager to identify early when the
release is slipping.

A project plan provides the teams involved in the
release with an indication of when specific
resources will be required during the release
cycle. This is important when work is delegated to

other teams, who may be needed during the user-
test stage. Individuals can be allocated to tasks to
aid planning where required.

MS Project or basic Gantt charts in Excel are the

easiest tools to use to produce plans (Figure 7 –
High Level Plan). It is usually unnecessary to plan
the work at a very detailed level, as detailed plans
get out of date quickly and need frequent re-work.
If a release starts to slip, it’s that the users are
notified as soon as the problem is identified. They
can then choose between keeping the original

delivery date and reducing the scope of the
release or allowing the release to be delayed.

EDWARDS Techniques for Managing Changes to Existing Simulation Models 88

High Level Plan - sample

Figure 7 Sample High Level Plan, showing anticipated involvement from user teams

Feb Mar Apr May Jun

Planned Releases

V08

CR0123 - Out Of Work States TJ

CR0126 - New Private Pension assumptions TJ TJ TJ

CR0126 - New Base Data HR/RP HR/RP HR/RP HR/RP HR/RP

CR0129 - Migrate Pensim2 to Genesis76 JA JA

CR0130 - Remove redundant code for V08 JA

Release V08 SE

CR0096 - Revised mortality equations IR

CR0120 - Fertility SM SM

Pensions Business team

Testing V08

Forecasting Division team

Testing V08

Demographic Team

Modelling team

5.2. Governance – User Groups and Steering
Groups

Strong project Governance structures are
essential for a successful model. It can take a

while to develop the most appropriate governance
structures and the membership of these groups
and their roles should be regularly reviewed to
ensure that they meet the needs of the customers
appropriately.

For a large, high profile model, a Model Steering
Group should be considered, consisting of senior
stakeholders. This group will not meet often
(maybe quarterly or semi-annually). Their purpose
is to provide clear direction and prioritisation of
the major future developments.

Each model needs an enthusiastic User Group,

which should meet frequently (e.g. once every 3
weeks). The User Group should consist of a
representative from each main group of the model
users. The members of the User Group will
propose potential changes and agree the detailed
requirements and priority of every change added

to the model. The members of the group are also
responsible for reviewing the outputs and signing
off the changes, before they are released.

The Model User Group plays a key role in ensuring
that the model is enhanced in the way that will

make best use of the limited resources available.
A word of warning – it can be difficult to establish
an enthusiastic User Group, but it is worth
persevering, as they provide valuable input to

your model. During the first year or so after the

Pensim2 model was released we had only 1 or 2
regular members of our User Group, but over time
the popularity of the group (and the model) has

increased and the group now has up to 10 users

who regularly attend the User Group session.

6. DIAGNOSTICS AND SUMMARY TOOL

6.1. Diagnostics Macro Tool
The dynamic micro-simulation model code used at
DWP is predominantly written using standard
Excel sheets that are then used to generate the

model. These sheets must follow a precise
template and the cross-references must be in
place.

A Diagnostic macro was produced in VBA to check
that the syntax of the code is valid and to ensure
that all the components of the code are accurate

and link together correctly, e.g. if a variable is
used in the code, then it must previously have
been defined in the Data Dictionary.

The Diagnostic macro is run before the model is
simulated and it produces a list of errors, if there
are any. These must be removed before the

simulation takes place.

The Diagnostics macro has proved invaluable, as it
saves a considerable amount of time during
testing. I strongly recommend that modellers
consider producing a Diagnostics macro to valid

the syntax of the model code, if it is appropriate
for their model.

EDWARDS Techniques for Managing Changes to Existing Simulation Models 89

6.2. Summary Macro Tool

A Summary macro has been developed in VBA,
which reads through the model spreadsheets and

produces a standard document showing where
each variable is assigned as an output variable
and also where each variable is used as an
explanatory variable or within a selection filter.

This is also a particularly useful tool, which is used
to help the modellers find their way around a
model and to identify the relationships between
variables. This documentation is automatically
generated by the macro and is produced
whenever a new release of the model is

implemented.

7. PERSONAL RECOMMENDATIONS

This section of the paper contains my personal
recommendations for techniques that should be
considered when maintaining models. By adhering
to this guidance, you will help to make your model
easier to maintain and hence lengthen its life.

When any system becomes overly complex, it
gradually reaches the point where no-one can
understand it, except its author, and hence it is no
longer usable by anyone else. Well written and
well maintained models can be picked up and
understood by another modeller. It is

recommended that this is a key aim when a model
is built.

7.1. Tidying Up Code
Don’t ever tidy up code as part of another change.

Always create a separate change request, carry
out the changes to tidy up the code and then
compare the outputs before and after the changes

have been applied – they should be identical.
Remove redundant code and variables as the last
step before a release is implemented. Again, carry
out a comparison test on the outputs before and
after the changes to ensure that the results are
not affected. Leaving redundant code in a model
causes confusion for future modellers. It is

considerably quicker to remove redundant code
when it becomes redundant rather than wait –
future modellers will not know whether it is
needed or not.

7.2. Keep it Simple – Avoid Complex Code
Write code that is easy-to-read – always consider

the next person who will be attempting to
understand your code, as you may not be around
to explain. Considerably more time is spent

reading code than writing it, so it needs to be easy

to understand.

Add lots of comments, using colours for clarity
where possible. If you have spent some time
working out what a section of code does, then add
a detailed comment with an explanation. Indent

your code to help readability. Write code in small
neat modules that can be more easily understood.

If your code is too difficult to understand, it won’t
survive.

7.3. Keep a tidy Directory structure
Although this sounds trivial – it is an important

point, as new team members need to be able to
find documents easily.

It is recommended that the top directory level is

restricted to 10 sub-directories. Consider
numbering them, so they are ordered as you want
to see them

Make your directory structure intuitive – this is
easier said than done. The aim is for someone to
be able to easily find what they are looking for.

7.4. Maintaining a Model with no existing
Documentation

If you are maintaining a model that does not have
clear documentation, then as a minimum starting
point, it is suggested that you consider the
following:-
Produce a High level presentation explaining the
model, including diagrams; Write a guidance

document explaining how to run the model; Add

comments to the code when changing the model;
Maintain an Assumptions audit log, when changing
the underlying model assumptions; Set up a
Change Control system; Produce a Release
Checklist and issue a Release Note with each new
version of the model.

Suggested Further Reading:

BUSINESS ANALYSIS by Don Yeates, Debra Paul,
Tony Jenkins, and Keith Hindle

ESSENTIAL SOFTWARE ARCHITECTURE by Ian

Gorton

PRINCE2 EDITION 2009: A Pocket Guide by B;
Seegers, R Hedeman

